There are many automatic organization phenomena and automatic organization unities in the universe. The automatic organization whole refers to a life body with the thinking. The thinking is the core of automatic organ...There are many automatic organization phenomena and automatic organization unities in the universe. The automatic organization whole refers to a life body with the thinking. The thinking is the core of automatic organization. The thinking is at eternal restless motion and binds to substances. The universe, organism and society are the automatic organization unities or life systems with the thinking. The thinking can perceive, attract, drive, organize and control all individuals and it is a force of life structure or universal gravitation and universal repulsion. The thinking has a life structure, a template and dynamic of entity-life's automatic organization. Life body has five dynamic systems: the thinking motion and information flow, breathing motion, closed-loop current (particle flow) and energy flow, interaction among state-varying, state-stabilizing and control organizations and active & automatic chemical-physical reactions, cardiac pulsation and active motion and transportation. Human, galaxies and society can change from low to high energy state initiatively. This is realized by controlling the desires of life entity via the thinking and breathing motions and by altering the body's binding forces dominating the life entity (in turn, by bond force, strong interaction and quark confinement). All forces in the universe present in the universe of life: force of the thinking-universal gravitation and universal repulsion, electromagnetic interaction, bond force, strong interaction, quark confinement and weak interaction. Under the automatic organization of the thinking, these forces bind into a 4-season' whole. The united state of these forces is controlled by the thinking and breathing motion, which is capable of changing from 3-, 2- and 1-dimensional states to a 0-dimensional state.展开更多
Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending ...Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.展开更多
We present a class of regular black holes with cosmological constant A in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere f...We present a class of regular black holes with cosmological constant A in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the A term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole. and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.展开更多
Cosmological models of a scalar field with dynamical equations containing fractional derivatives or derived from the Einstein-Hilbert action of fractional order, are constructed. A number of exact solutions to those e...Cosmological models of a scalar field with dynamical equations containing fractional derivatives or derived from the Einstein-Hilbert action of fractional order, are constructed. A number of exact solutions to those equations of fractional cosmological models in both eases is given.展开更多
A kinematical model (a parameterized deceleration parameter) and a dynamical model (a parameterized equation of state for dark energy) are constrained from the current observational data including the high-redshif...A kinematical model (a parameterized deceleration parameter) and a dynamical model (a parameterized equation of state for dark energy) are constrained from the current observational data including the high-redshift Gamma-Ray Bursts (GRBs) data with a redshift range from 1.4 to 9. We obtain the stringent constraint on the values of current deceleration parameter q0, current jerk parameter j0, current equation of state for dark energy Woae and transition redshift zT. In addition, we compare the difference of the constraint results between the kinematical and the dynamical scenarios.展开更多
Recently, a new dark energy model called AHDE was proposed. In this model, dark energy consists of two parts: cosmological constant A and holographic dark energy (HDE). Two key parameters of this model are the frac...Recently, a new dark energy model called AHDE was proposed. In this model, dark energy consists of two parts: cosmological constant A and holographic dark energy (HDE). Two key parameters of this model are the fractional density of cosmological constant Ω2A0, and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ΩA0 and c on the AHDE model. In this paper, we apply various DE diagnostic tools to diagnose AHDE models with different values of ΩA0 and c; these tools include statefinder hierarchy {S3^(1) ,S4(1)fractional growth parameter E, and composite null diagnostic (CND), which is a combination of{S3(1),S4(1)} and E. We find that: (1) adopting different values of ΩA0 only has quantitative impacts on the evolution of the AHDE model, while adopting different c has qualitative impacts; (2) compared with S(1), S(41) can give larger differences among the cosmic evolutions of the AHDE model associated with different ΩA0 or different c; (3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the AHDE model.展开更多
A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe.The energy density of ghost dark energy,which originates from Veneziano ghost of Quantum Chromodynamics(QCD),in a...A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe.The energy density of ghost dark energy,which originates from Veneziano ghost of Quantum Chromodynamics(QCD),in a time dependent background,can be written in the form,ρD=αH + βH^2 where H is the Hubble parameter.We investigate the generalized ghost dark energy(GGDE) model in the setup of loop quantum Cosmology(LQC) and Galileon Cosmology.We study the cosmological implications of the models.We also obtain the equation of state and the deceleration parameters and differential equations governing the evolution of this dark energy model for LQC and Galileon Cosmology.展开更多
This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous ...This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous and anisotropic Bianchi type Ⅰ space-time have been obtained. The solutions of the Einstein's field equations are obtained by considering(i) the power law relation between Hubble parameter H and scale factor R and(ii) scale factor of the form R =-1/t + t^2, t > 1. The assumptions lead to constant and variable deceleration parameter respectively. The physical and dynamical behaviors of the models have been discussed with the help of graphical representations. Also we have discussed the stability and physical acceptability of solutions for solution type-Ⅰ and solution type-Ⅱ.展开更多
We consider a tachyonic model of dark energy in which scalar field non-minimally coupled with curvature and kinetic part of its Lagrangian density.Additionally the model contains the Gauss–Bonnet coupling to the scal...We consider a tachyonic model of dark energy in which scalar field non-minimally coupled with curvature and kinetic part of its Lagrangian density.Additionally the model contains the Gauss–Bonnet coupling to the scalar field through an arbitrary function.The non-minimal Gauss–Bonnet coupling function and scalar field potential have been obtained for power-law solution and then for a dynamically varying equation of state.We have extracted the required condition for the so-called phantom divide line crossing in the model and represented such a crossing numerically.展开更多
We study the hydrodynamics of bubble expansion in cosmological first-order phase transition in the Fdedmann-LemMtre- Robertson-Walker (FLRW) background with probe limit. Different from previous studies for fast firs...We study the hydrodynamics of bubble expansion in cosmological first-order phase transition in the Fdedmann-LemMtre- Robertson-Walker (FLRW) background with probe limit. Different from previous studies for fast first-order phase transition in flat background, we find that, for slow first-order phase transition in FLRW background with a given peculiar velocity of the bubble wall, the efficiency factor of energy transfer into bulk motion of thermal fluid is significantly reduced, thus decreasing the previously-thought dominated contribution from sound wave to the stochastic gravitational-wave background.展开更多
We present a general analysis on non-static axial system with dissipative shear-free anisotropic fluid using polynomial inflationary f(R) model.We study the effects of dissipation on the dynamics of geodesic matter di...We present a general analysis on non-static axial system with dissipative shear-free anisotropic fluid using polynomial inflationary f(R) model.We study the effects of dissipation on the dynamics of geodesic matter distribution.This leads the system either to rotation-free or expansion-free but not both simultaneously under geodesic condition.It is found that the system preserves its symmetry in both cases.For the rotation-free case,when there is no dissipation and Ricci scalar is constant,the axial system reduces to FRW universe model.This is exactly the same result obtained in general relativity.展开更多
We investigate generalized chaplygin gas for warm inflationary scenario in the context of locally rotationally symmetric Bianchi type I universe model.We assume two different cases of dissipative coefficient,i.e.,cons...We investigate generalized chaplygin gas for warm inflationary scenario in the context of locally rotationally symmetric Bianchi type I universe model.We assume two different cases of dissipative coefficient,i.e.,constant as well as function of scalar field.We construct dynamical equations as well as a relationship between scalar and radiation energy densities under slow-roll approximation.We also derive slow-roll parameters,scalar and tensor power spectra,scalar spectral index,tensor to scalar ratio for analyzing inflationary background during high dissipative regime.We also use the WMAP7 data for the discussion of our parameters.展开更多
文摘There are many automatic organization phenomena and automatic organization unities in the universe. The automatic organization whole refers to a life body with the thinking. The thinking is the core of automatic organization. The thinking is at eternal restless motion and binds to substances. The universe, organism and society are the automatic organization unities or life systems with the thinking. The thinking can perceive, attract, drive, organize and control all individuals and it is a force of life structure or universal gravitation and universal repulsion. The thinking has a life structure, a template and dynamic of entity-life's automatic organization. Life body has five dynamic systems: the thinking motion and information flow, breathing motion, closed-loop current (particle flow) and energy flow, interaction among state-varying, state-stabilizing and control organizations and active & automatic chemical-physical reactions, cardiac pulsation and active motion and transportation. Human, galaxies and society can change from low to high energy state initiatively. This is realized by controlling the desires of life entity via the thinking and breathing motions and by altering the body's binding forces dominating the life entity (in turn, by bond force, strong interaction and quark confinement). All forces in the universe present in the universe of life: force of the thinking-universal gravitation and universal repulsion, electromagnetic interaction, bond force, strong interaction, quark confinement and weak interaction. Under the automatic organization of the thinking, these forces bind into a 4-season' whole. The united state of these forces is controlled by the thinking and breathing motion, which is capable of changing from 3-, 2- and 1-dimensional states to a 0-dimensional state.
文摘Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.
基金The project supported by National Natural Science Foundation of China, Ministry of Education of China, Ministry of Science and Technology of China, and Shanghai Education Commission . W.J. Mo thanks Prof. Bin Wang and group member Jian-Yong Shen for useful discussions. R.G. Cai would like to express his gratitude to Physics Department, Fudan University for its hospitality.
文摘We present a class of regular black holes with cosmological constant A in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the A term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole. and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.
文摘Cosmological models of a scalar field with dynamical equations containing fractional derivatives or derived from the Einstein-Hilbert action of fractional order, are constructed. A number of exact solutions to those equations of fractional cosmological models in both eases is given.
基金supported by the National Natural Science Foundation of China (Grant Nos.11147150,11175077 and 11005088)the Natural Science Foundation of Education Department of Liaoning Province (Grant No. L2011189)the Natural Science Foundation of Liaoning Province,China (Grant No.20102124)
文摘A kinematical model (a parameterized deceleration parameter) and a dynamical model (a parameterized equation of state for dark energy) are constrained from the current observational data including the high-redshift Gamma-Ray Bursts (GRBs) data with a redshift range from 1.4 to 9. We obtain the stringent constraint on the values of current deceleration parameter q0, current jerk parameter j0, current equation of state for dark energy Woae and transition redshift zT. In addition, we compare the difference of the constraint results between the kinematical and the dynamical scenarios.
基金supported by the National Natural Science Foundation of China(Grant No.11405024)
文摘Recently, a new dark energy model called AHDE was proposed. In this model, dark energy consists of two parts: cosmological constant A and holographic dark energy (HDE). Two key parameters of this model are the fractional density of cosmological constant Ω2A0, and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ΩA0 and c on the AHDE model. In this paper, we apply various DE diagnostic tools to diagnose AHDE models with different values of ΩA0 and c; these tools include statefinder hierarchy {S3^(1) ,S4(1)fractional growth parameter E, and composite null diagnostic (CND), which is a combination of{S3(1),S4(1)} and E. We find that: (1) adopting different values of ΩA0 only has quantitative impacts on the evolution of the AHDE model, while adopting different c has qualitative impacts; (2) compared with S(1), S(41) can give larger differences among the cosmic evolutions of the AHDE model associated with different ΩA0 or different c; (3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the AHDE model.
文摘A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe.The energy density of ghost dark energy,which originates from Veneziano ghost of Quantum Chromodynamics(QCD),in a time dependent background,can be written in the form,ρD=αH + βH^2 where H is the Hubble parameter.We investigate the generalized ghost dark energy(GGDE) model in the setup of loop quantum Cosmology(LQC) and Galileon Cosmology.We study the cosmological implications of the models.We also obtain the equation of state and the deceleration parameters and differential equations governing the evolution of this dark energy model for LQC and Galileon Cosmology.
文摘This paper deals with study of generalized Chaplygin gas model with dynamical gravitational and cosmological constants. In this paper a new set of exact solutions of Einstein field equations for spatially homogeneous and anisotropic Bianchi type Ⅰ space-time have been obtained. The solutions of the Einstein's field equations are obtained by considering(i) the power law relation between Hubble parameter H and scale factor R and(ii) scale factor of the form R =-1/t + t^2, t > 1. The assumptions lead to constant and variable deceleration parameter respectively. The physical and dynamical behaviors of the models have been discussed with the help of graphical representations. Also we have discussed the stability and physical acceptability of solutions for solution type-Ⅰ and solution type-Ⅱ.
文摘We consider a tachyonic model of dark energy in which scalar field non-minimally coupled with curvature and kinetic part of its Lagrangian density.Additionally the model contains the Gauss–Bonnet coupling to the scalar field through an arbitrary function.The non-minimal Gauss–Bonnet coupling function and scalar field potential have been obtained for power-law solution and then for a dynamically varying equation of state.We have extracted the required condition for the so-called phantom divide line crossing in the model and represented such a crossing numerically.
基金supported by the National Natural Science Foundation of China(Grant Nos.11690022,11435006,11447601,and 11647601)the Strategic Priority Research Program of China Academy Sciences(Grant No.XDB23030100)+1 种基金the Peng Huanwu Innovation Research Center for Theoretical Physics(Grant No.11747601)the Key Research Program of Frontier Sciences of China Academy Sciences
文摘We study the hydrodynamics of bubble expansion in cosmological first-order phase transition in the Fdedmann-LemMtre- Robertson-Walker (FLRW) background with probe limit. Different from previous studies for fast first-order phase transition in flat background, we find that, for slow first-order phase transition in FLRW background with a given peculiar velocity of the bubble wall, the efficiency factor of energy transfer into bulk motion of thermal fluid is significantly reduced, thus decreasing the previously-thought dominated contribution from sound wave to the stochastic gravitational-wave background.
文摘We present a general analysis on non-static axial system with dissipative shear-free anisotropic fluid using polynomial inflationary f(R) model.We study the effects of dissipation on the dynamics of geodesic matter distribution.This leads the system either to rotation-free or expansion-free but not both simultaneously under geodesic condition.It is found that the system preserves its symmetry in both cases.For the rotation-free case,when there is no dissipation and Ricci scalar is constant,the axial system reduces to FRW universe model.This is exactly the same result obtained in general relativity.
文摘We investigate generalized chaplygin gas for warm inflationary scenario in the context of locally rotationally symmetric Bianchi type I universe model.We assume two different cases of dissipative coefficient,i.e.,constant as well as function of scalar field.We construct dynamical equations as well as a relationship between scalar and radiation energy densities under slow-roll approximation.We also derive slow-roll parameters,scalar and tensor power spectra,scalar spectral index,tensor to scalar ratio for analyzing inflationary background during high dissipative regime.We also use the WMAP7 data for the discussion of our parameters.