We present a class of regular black holes with cosmological constant A in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere f...We present a class of regular black holes with cosmological constant A in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the A term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole. and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.展开更多
We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients (&g = 363 = a2), we analyze the t...We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients (&g = 363 = a2), we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant A plays an important role in the distribution of black hole stable regions.展开更多
Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive gravity model in cosmology proposed lately, the corrected entropic formul...Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive gravity model in cosmology proposed lately, the corrected entropic formula of the apparent horizon is obtaJned with the help of the modified Friedmann equations. This entropy-area relation, together with the identified Misner-Sharp internal energy, verifies the first law of thermodynamics for the apparent horizon with a volume change term for consistency. On the other hand, by means of the corrected entropy-area formula and the Clausius relation δQ = T dS, where the heat flow δQ is the energy-supply of pure matter projecting on the vector ξ tangent to the apparent horizon and should be looked on as the amount of energy crossing the apparent horizon during the time interval dt and the temperature of the apparent horizon for energy crossing during the same interval is 1/(2πτA), the modified Friedmann equations governing the dynamical evolution of the universe are reproduced with the known energy density and pressure of massive graviton. The integration constant is found to correspond to a cosmological term which could be absorbed into the energy density of matter. Having established the correspondence of massive cosmology with the unified first law of thermodynamics on the apparent horizon, the validity of the generalized second law of thermodynamics is also discussed by assuming the thermal equilibrium between the apparent horizon and the matter field bounded by the apparent horizon. It is found that, in the limit Hc → 0, which recovers the Minkowski reference metric solution in the fiat case, the generalized second law of thermodynamics holds if α3 + 4α4 〈 0. Without this condition, even for the simplest model of dRGT massive cosmology with α3= α4 = 0, the generalized second law of thermodynamics could be violated.展开更多
We discuss the P-V criticality and phase transition in the extended phase space of Born-Infeld AdS(BIAdS) black hole surrounded by quintessence dark energy, where the cosmological constant Λ is identified with the th...We discuss the P-V criticality and phase transition in the extended phase space of Born-Infeld AdS(BIAdS) black hole surrounded by quintessence dark energy, where the cosmological constant Λ is identified with the thermodynamical pressure P. Comparing with Van der Waals(VdW)-like SBH/LBH phase transition of Born-Infeld AdS(BI-AdS) black hole, we find that the BI-AdS black hole surrounded by quintessence dark energy possesses lower critical temperature because of parameter a > 0, even disappears since the parameter a taking enough large values leads to Tc ≤ 0. Moreover, the interesting thermodynamic phenomenon of reentrant phase transition(RPT) are also observed,and the quintessence dark energy plays a similar role in this RPT.展开更多
In Einstein-aether theory,violating Lorentz invariance permits some super-luminal communications,and the universal horizon can trap excitations traveling at arbitrarily high velocities.To better understand the nature ...In Einstein-aether theory,violating Lorentz invariance permits some super-luminal communications,and the universal horizon can trap excitations traveling at arbitrarily high velocities.To better understand the nature of these universal horizons,we first modify the ray tracing method,and then use it to study their surface gravity in charged Einstein-aether black hole spacetime.Instead of the previous result by Cropp et al.,our results show that the surface gravity of the universal horizon is dependent on the specific dispersion relation,k_(uh)-2(z-1)k_(uh)/z,where z denotes the power of the leading term in the superluminal dispersion relation,characterizing different species of particles.And the associated Hawking temperatures also are different with z.These findings,which coincide with those derived by the tunneling method,provide some full understanding of black hole thermodynamics in Lorentz-violating theories.展开更多
Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best mode...Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, p, the deceleration parameter, q, the equations of state parameter, wD, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the OSLT of thermodynamics in a fractal cosmology.展开更多
The objective of this paper is to discuss the Chameleon Brans–Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy den...The objective of this paper is to discuss the Chameleon Brans–Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n.展开更多
基金The project supported by National Natural Science Foundation of China, Ministry of Education of China, Ministry of Science and Technology of China, and Shanghai Education Commission . W.J. Mo thanks Prof. Bin Wang and group member Jian-Yong Shen for useful discussions. R.G. Cai would like to express his gratitude to Physics Department, Fudan University for its hospitality.
文摘We present a class of regular black holes with cosmological constant A in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the A term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole. and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.
基金Supported by National Natural Science Foundation of China under Grant No. 10875060
文摘We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients (&g = 363 = a2), we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant A plays an important role in the distribution of black hole stable regions.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10747155, 11205131, 11175270, 11005164, and 10935013, ChongqingChongqing Science and Technology Commission under Grant No. 2010BB0408Local Support from Argonne National Laboratory
文摘Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive gravity model in cosmology proposed lately, the corrected entropic formula of the apparent horizon is obtaJned with the help of the modified Friedmann equations. This entropy-area relation, together with the identified Misner-Sharp internal energy, verifies the first law of thermodynamics for the apparent horizon with a volume change term for consistency. On the other hand, by means of the corrected entropy-area formula and the Clausius relation δQ = T dS, where the heat flow δQ is the energy-supply of pure matter projecting on the vector ξ tangent to the apparent horizon and should be looked on as the amount of energy crossing the apparent horizon during the time interval dt and the temperature of the apparent horizon for energy crossing during the same interval is 1/(2πτA), the modified Friedmann equations governing the dynamical evolution of the universe are reproduced with the known energy density and pressure of massive graviton. The integration constant is found to correspond to a cosmological term which could be absorbed into the energy density of matter. Having established the correspondence of massive cosmology with the unified first law of thermodynamics on the apparent horizon, the validity of the generalized second law of thermodynamics is also discussed by assuming the thermal equilibrium between the apparent horizon and the matter field bounded by the apparent horizon. It is found that, in the limit Hc → 0, which recovers the Minkowski reference metric solution in the fiat case, the generalized second law of thermodynamics holds if α3 + 4α4 〈 0. Without this condition, even for the simplest model of dRGT massive cosmology with α3= α4 = 0, the generalized second law of thermodynamics could be violated.
基金Supported by the National Natural Science Foundation of China under Grant No.1160515Natural Science Foundation of Jiangsu Province under Grant No.BK20160452
文摘We discuss the P-V criticality and phase transition in the extended phase space of Born-Infeld AdS(BIAdS) black hole surrounded by quintessence dark energy, where the cosmological constant Λ is identified with the thermodynamical pressure P. Comparing with Van der Waals(VdW)-like SBH/LBH phase transition of Born-Infeld AdS(BI-AdS) black hole, we find that the BI-AdS black hole surrounded by quintessence dark energy possesses lower critical temperature because of parameter a > 0, even disappears since the parameter a taking enough large values leads to Tc ≤ 0. Moreover, the interesting thermodynamic phenomenon of reentrant phase transition(RPT) are also observed,and the quintessence dark energy plays a similar role in this RPT.
基金supported by the National Natural Science Foundation of China(Grant No.11247013)Hunan Provincial Natural Science Foundation of China(Grant Nos.2015JJ2085,and QSQC1203)the Special Fund of the National Natural Science Foundation of China(Grant No.11447168)
文摘In Einstein-aether theory,violating Lorentz invariance permits some super-luminal communications,and the universal horizon can trap excitations traveling at arbitrarily high velocities.To better understand the nature of these universal horizons,we first modify the ray tracing method,and then use it to study their surface gravity in charged Einstein-aether black hole spacetime.Instead of the previous result by Cropp et al.,our results show that the surface gravity of the universal horizon is dependent on the specific dispersion relation,k_(uh)-2(z-1)k_(uh)/z,where z denotes the power of the leading term in the superluminal dispersion relation,characterizing different species of particles.And the associated Hawking temperatures also are different with z.These findings,which coincide with those derived by the tunneling method,provide some full understanding of black hole thermodynamics in Lorentz-violating theories.
文摘Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, p, the deceleration parameter, q, the equations of state parameter, wD, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the OSLT of thermodynamics in a fractal cosmology.
基金The financial Supported from Department of Science and Technology,Govt.of India under Project Grant No.SR/FTP/PS-167/2011 is thankfully acknowledged by SC
文摘The objective of this paper is to discuss the Chameleon Brans–Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n.