With the development of information networks, the problem of power security has increasingly caused many attention of people, but the simple power security defense system has been difficult to meet the current complex...With the development of information networks, the problem of power security has increasingly caused many attention of people, but the simple power security defense system has been difficult to meet the current complex network environment. Aiming at this situation, by using the method of T-S fuzzy neural network model to analyze the characteristics of the data transmission in network, it has obtained corresponding threat information. By processing these threat information, it completes the construction of three-dimensional power security defense system. The paper carries on the corresponding data training methods by using T-shirt model fuzzy neural network, which has certain reference significance for the data analysis of other similar fields. At the same time, the study of building on the three-dimensional power security defense system aims to provide a theoretical reference for solving the security defense of the current complex network environment.展开更多
In the near future, active safety systems will take more control over the vehicle driving, even up to introducing fully autonomous vehicles. Nowadays, it is expected that the active safety systems will aid avoiding co...In the near future, active safety systems will take more control over the vehicle driving, even up to introducing fully autonomous vehicles. Nowadays, it is expected that the active safety systems will aid avoiding collisions much more efficiently than human drivers. These systems can protect not only the passengers, but also other road users. To mitigate collision, certain maneuvers (e.g., sudden braking, lane change, etc.) need to be done in a reasonably quick time. However, this may lead to low-g energy pulses. The latter fact, may cause unexpected and, in some cases, unwanted occupant body motion resulting even in OOP (out of position) postures. New patterns of occupant reactions in such cases are, to some extent, confirmed experimentally [1-3]. This paper evaluates the limits of standard ATDs (anthropometric test devices) and chosen human models in well established maneuver scenarios. Obtained results are compared with experimental data available in the literature. Drawbacks identify new challenges for the near future simulation based safety engineering. One scenario with combined conditions of emergency braking during lane change has been used as an example of OOP posture after maneuver.展开更多
文摘With the development of information networks, the problem of power security has increasingly caused many attention of people, but the simple power security defense system has been difficult to meet the current complex network environment. Aiming at this situation, by using the method of T-S fuzzy neural network model to analyze the characteristics of the data transmission in network, it has obtained corresponding threat information. By processing these threat information, it completes the construction of three-dimensional power security defense system. The paper carries on the corresponding data training methods by using T-shirt model fuzzy neural network, which has certain reference significance for the data analysis of other similar fields. At the same time, the study of building on the three-dimensional power security defense system aims to provide a theoretical reference for solving the security defense of the current complex network environment.
文摘In the near future, active safety systems will take more control over the vehicle driving, even up to introducing fully autonomous vehicles. Nowadays, it is expected that the active safety systems will aid avoiding collisions much more efficiently than human drivers. These systems can protect not only the passengers, but also other road users. To mitigate collision, certain maneuvers (e.g., sudden braking, lane change, etc.) need to be done in a reasonably quick time. However, this may lead to low-g energy pulses. The latter fact, may cause unexpected and, in some cases, unwanted occupant body motion resulting even in OOP (out of position) postures. New patterns of occupant reactions in such cases are, to some extent, confirmed experimentally [1-3]. This paper evaluates the limits of standard ATDs (anthropometric test devices) and chosen human models in well established maneuver scenarios. Obtained results are compared with experimental data available in the literature. Drawbacks identify new challenges for the near future simulation based safety engineering. One scenario with combined conditions of emergency braking during lane change has been used as an example of OOP posture after maneuver.