The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by bind...The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.展开更多
The risk and thermal safety characteristics of GX kerosene,HX kerosene and WX kerosene are studied.Firstly,the explosion lower limits of three kinds of kerosene steams are tested by using the self-made explosion limit...The risk and thermal safety characteristics of GX kerosene,HX kerosene and WX kerosene are studied.Firstly,the explosion lower limits of three kinds of kerosene steams are tested by using the self-made explosion limit measuring system.Then differential scanning calorimeter(DSC)is employed to perform linear heating experiment on kerosene to analyze its thermal decomposition characteristics.The pyrolysis kinetic parameters of three kinds of kerosene are calculated based on the thermal dynamic methods.The experimental results show that the flash point and lower explosion limit of GX kerosene are relatively low.The DSC test shows that the lowest initial decomposition temperature of HX kerosene is 116.5℃.According to pyrolysis kinetics calculation,the T_(D24) and apparent activation energy of HX kerosene are the minimum.ARC test shows that GX kerosene has the worst thermal stability under the adiabatic condition.The high temperature stabilities of the three kinds of kerosene all meet the requirements.On the whole,GX kerosene has the highest hazard,and HX kerosene has the lowest thermal safety.The accumulation of heat should be prevented during the storage and transportation of kerosene.This study provides the crucial safety characteristics data of coal-based aerospace kerosene-based,and provides technical support for engine reliability growth and performance improvement.展开更多
The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift f...The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).展开更多
To generate dynamic planning for coal mine safety investment, this study applies system dynamics to decision-making, classifying safety investments by accident type. It validates the relationship between safety invest...To generate dynamic planning for coal mine safety investment, this study applies system dynamics to decision-making, classifying safety investments by accident type. It validates the relationship between safety investments and accident cost, by structurally analyzing the causality between safety investments and their influence factors. Our simulation model, based on Vensim software, conducts simulation analysis on a series of actual data from a coalmine in Shanxi Province. Our results indicate a lag phase in safety investments, and that increasing pre-phase safety investment reduces accident costs. We found that a 24% increase in initial safety investment could help reach the target accident costs level 14 months earlier. Our simulation test included nine kinds of variation trends of accident costs brought by different investment ratios on accident prevention. We found an optimized ratio of accident prevention investments allowing a mine to reach accident cost goals 4 months earlier, without changing its total investment.展开更多
Presence of fine dust in air causes serious health hazard for mine operators resulting in such serious problems as coal workers’pneumoconiosis and silicosis.Major sources of dust appear of course along the mining fac...Presence of fine dust in air causes serious health hazard for mine operators resulting in such serious problems as coal workers’pneumoconiosis and silicosis.Major sources of dust appear of course along the mining face where the minerals are extracted.Proper control and management are required to ensure safe working environment in the mine.Here,we utilize the computational fluid dynamic(CFD)approach to evaluate various methods used for mitigating dust dispersion from the mining face and for ensuring safe level of dust concentration in the mine tunnel for safety of the operators.The methods used include:application of blowing and exhaust fans,application of brattice and combination of both.The results suggest that among the examined methods,implementation of appropriately located brattice to direct the flow from the main shaft to the mining face is the most effective method to direct dust particles away from the mining face.展开更多
In order to ensure the ballistic safety of fusible alloy fuze at reliable delay arming, melting point of fusible alloy needs to be calculated based on projectile velocity at safe time and distance. Taking shrapnel KZ...In order to ensure the ballistic safety of fusible alloy fuze at reliable delay arming, melting point of fusible alloy needs to be calculated based on projectile velocity at safe time and distance. Taking shrapnel KZVD fuze of Switzerland oerlikon 2ZLa/353 35 mm double barrel self-propelled antiaircraft artillery as an example, based on the aerodynamics heating theory, the calculation of theory model and simulation of projectile head stagnation point temperature were done in initial stage of sim-plified exterior ballistic from engineering viewpoint when the initial projectile velocity was 1 175 m/s and the error was ±15 m/s. The melting point of fusible alloy in the safe distance was obtained by analyzing the temperature of projectile head stagnation point at corresponding projectile velocity. The simulated results indicate that the melting point of fusible alloy de-rived by theoretical calculation is identical with the result of simulation at the velocity range of 1 160 to 1 190 m/s. So the aero- thermodynamics model can be applied to design the fusible alloy fuze of corresponding melting point based on the requirement of safe distance. This method can be taken as the reference in studying the thermodynamic question of projectile flying at high speed.展开更多
Two ID-based authenticated group key agreement schemes, proposed by Choi et al and Du et al, are insecure against an impersonation attack and th ey only discussed the static group. This paper proposed a variant of BD ...Two ID-based authenticated group key agreement schemes, proposed by Choi et al and Du et al, are insecure against an impersonation attack and th ey only discussed the static group. This paper proposed a variant of BD protocol , which is fully authenticated by a proven-secure ID-based signature scheme. T he protocol can res ist the impersonation attack, and other security attributes are also satisfied. Compared with Choi et al and Du et al schemes, the proposed one is mor e efficient and applicable for dynamic groups.展开更多
Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work w...Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.展开更多
The Zeldovich-Frank-Kamenetskii solution for the flame velocity of a planar front with one-step overall chemical reaction was enhanced. The assumption that the consumption rate depends exclusively on a chemical compon...The Zeldovich-Frank-Kamenetskii solution for the flame velocity of a planar front with one-step overall chemical reaction was enhanced. The assumption that the consumption rate depends exclusively on a chemical component was removed. Instead, the reaction rate was considered to be dependent on all reactants of an overall reaction. The new formulation was applied to obtain the activation energy and the pre-exponential factor of a set of hydrogen-air mixtures.展开更多
The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational flu...The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational fluid dynamic (CFD) software FLUENT,validated with published data,was used to solve the gas-solid multiphase flow of a sandstorm around a train.The train aerodynamic performance under different sandstorm levels and no sand conditions was then simulated.Results showed that in sandstorm weather,the drag,lift,side forces and overturning moment increase by variable degrees.Based on a numerical analysis of aerodynamic characteristics,an equation of train stability was also derived using the theory of moment balance from the view of dynamics.A recommended speed limit of a train under different sandstorm levels was calculated based on the stability analysis.展开更多
Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stabili...Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stability vs risk of overloading. In recent publications, it was found that a priority was often given to hemodynamic stability rather than organ function alternation in the early fluid resusci- tation of sepsis. However, no safety limits were used at all in most of these reports. In this article, the rationality and safety of early aggressive fluid loading for septic patients were discussed. It was concluded that early aggressive fluid loading improved hemodynamics transitorily, but was probably traded off with a follow-up organ function impairment, such as worsening oxygenation by reduction of lung aeration, in a part of septic patients at least. Thus, a safeguard is needed against unnecessary excessive fluids in early aggressive fluid loading for set)tic patients.展开更多
文摘The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.
基金Special project of the Science and Industry Bureau(No.1202141030882)。
文摘The risk and thermal safety characteristics of GX kerosene,HX kerosene and WX kerosene are studied.Firstly,the explosion lower limits of three kinds of kerosene steams are tested by using the self-made explosion limit measuring system.Then differential scanning calorimeter(DSC)is employed to perform linear heating experiment on kerosene to analyze its thermal decomposition characteristics.The pyrolysis kinetic parameters of three kinds of kerosene are calculated based on the thermal dynamic methods.The experimental results show that the flash point and lower explosion limit of GX kerosene are relatively low.The DSC test shows that the lowest initial decomposition temperature of HX kerosene is 116.5℃.According to pyrolysis kinetics calculation,the T_(D24) and apparent activation energy of HX kerosene are the minimum.ARC test shows that GX kerosene has the worst thermal stability under the adiabatic condition.The high temperature stabilities of the three kinds of kerosene all meet the requirements.On the whole,GX kerosene has the highest hazard,and HX kerosene has the lowest thermal safety.The accumulation of heat should be prevented during the storage and transportation of kerosene.This study provides the crucial safety characteristics data of coal-based aerospace kerosene-based,and provides technical support for engine reliability growth and performance improvement.
基金Project(U1334203) supported by the National Natural Science Foundation of China
文摘The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).
基金financial support from the National Natural Science Foundation of China (No. 51174214)
文摘To generate dynamic planning for coal mine safety investment, this study applies system dynamics to decision-making, classifying safety investments by accident type. It validates the relationship between safety investments and accident cost, by structurally analyzing the causality between safety investments and their influence factors. Our simulation model, based on Vensim software, conducts simulation analysis on a series of actual data from a coalmine in Shanxi Province. Our results indicate a lag phase in safety investments, and that increasing pre-phase safety investment reduces accident costs. We found that a 24% increase in initial safety investment could help reach the target accident costs level 14 months earlier. Our simulation test included nine kinds of variation trends of accident costs brought by different investment ratios on accident prevention. We found an optimized ratio of accident prevention investments allowing a mine to reach accident cost goals 4 months earlier, without changing its total investment.
基金financially supported by the Singapore Economic Development Board (EDB) through Minerals Metals and Materials Technology Centre (M3TC) (No.R261501013414)
文摘Presence of fine dust in air causes serious health hazard for mine operators resulting in such serious problems as coal workers’pneumoconiosis and silicosis.Major sources of dust appear of course along the mining face where the minerals are extracted.Proper control and management are required to ensure safe working environment in the mine.Here,we utilize the computational fluid dynamic(CFD)approach to evaluate various methods used for mitigating dust dispersion from the mining face and for ensuring safe level of dust concentration in the mine tunnel for safety of the operators.The methods used include:application of blowing and exhaust fans,application of brattice and combination of both.The results suggest that among the examined methods,implementation of appropriately located brattice to direct the flow from the main shaft to the mining face is the most effective method to direct dust particles away from the mining face.
文摘In order to ensure the ballistic safety of fusible alloy fuze at reliable delay arming, melting point of fusible alloy needs to be calculated based on projectile velocity at safe time and distance. Taking shrapnel KZVD fuze of Switzerland oerlikon 2ZLa/353 35 mm double barrel self-propelled antiaircraft artillery as an example, based on the aerodynamics heating theory, the calculation of theory model and simulation of projectile head stagnation point temperature were done in initial stage of sim-plified exterior ballistic from engineering viewpoint when the initial projectile velocity was 1 175 m/s and the error was ±15 m/s. The melting point of fusible alloy in the safe distance was obtained by analyzing the temperature of projectile head stagnation point at corresponding projectile velocity. The simulated results indicate that the melting point of fusible alloy de-rived by theoretical calculation is identical with the result of simulation at the velocity range of 1 160 to 1 190 m/s. So the aero- thermodynamics model can be applied to design the fusible alloy fuze of corresponding melting point based on the requirement of safe distance. This method can be taken as the reference in studying the thermodynamic question of projectile flying at high speed.
文摘Two ID-based authenticated group key agreement schemes, proposed by Choi et al and Du et al, are insecure against an impersonation attack and th ey only discussed the static group. This paper proposed a variant of BD protocol , which is fully authenticated by a proven-secure ID-based signature scheme. T he protocol can res ist the impersonation attack, and other security attributes are also satisfied. Compared with Choi et al and Du et al schemes, the proposed one is mor e efficient and applicable for dynamic groups.
基金Projects(51075401,U1334205)supported by the National Natural Science Foundation of ChinaProject supported by the Scholarship Award for Excellent Innovative Doctoral Student granted by Central South University of ChinaProject(132014)supported by the Fok Ying Tong Education Foundation,China
文摘Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.
文摘The Zeldovich-Frank-Kamenetskii solution for the flame velocity of a planar front with one-step overall chemical reaction was enhanced. The assumption that the consumption rate depends exclusively on a chemical component was removed. Instead, the reaction rate was considered to be dependent on all reactants of an overall reaction. The new formulation was applied to obtain the activation energy and the pre-exponential factor of a set of hydrogen-air mixtures.
基金Project(No.2009BAG12A01-C03) supported by the National Key Technology R&D Program of China
文摘The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational fluid dynamic (CFD) software FLUENT,validated with published data,was used to solve the gas-solid multiphase flow of a sandstorm around a train.The train aerodynamic performance under different sandstorm levels and no sand conditions was then simulated.Results showed that in sandstorm weather,the drag,lift,side forces and overturning moment increase by variable degrees.Based on a numerical analysis of aerodynamic characteristics,an equation of train stability was also derived using the theory of moment balance from the view of dynamics.A recommended speed limit of a train under different sandstorm levels was calculated based on the stability analysis.
文摘Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stability vs risk of overloading. In recent publications, it was found that a priority was often given to hemodynamic stability rather than organ function alternation in the early fluid resusci- tation of sepsis. However, no safety limits were used at all in most of these reports. In this article, the rationality and safety of early aggressive fluid loading for septic patients were discussed. It was concluded that early aggressive fluid loading improved hemodynamics transitorily, but was probably traded off with a follow-up organ function impairment, such as worsening oxygenation by reduction of lung aeration, in a part of septic patients at least. Thus, a safeguard is needed against unnecessary excessive fluids in early aggressive fluid loading for set)tic patients.