This paper presents a model to simulate the safe behavior of Dagangshan arch dam with a rate-dependency anisotropic damage model. This model considers the damage of asymmetry and anisotropy under cyclic loading of ten...This paper presents a model to simulate the safe behavior of Dagangshan arch dam with a rate-dependency anisotropic damage model. This model considers the damage of asymmetry and anisotropy under cyclic loading of tension and compression, and it is used in the compiled finite element code. The material parameters used in the model can be identified from uniaxial static and dynamic experiments. Thereafter, it is used for analyzing damage and failure patterns of the dam subjected to water pressure and strong earthquakes. The numerical results show that it is necessary to consider both asymmetry between tension and compression and anisotropy of damage. Severe damage regions of the dam reveal brittle and risky positions clearly. Meanwhile damage patterns show the failure trend and safety behaviors of the dam. These results match well with that of the experiments carried out in DUT. The proposed model may be used to predict the damage patterns and potential failure modes of concrete structures like the dam. And the aseismic performance of the dam can be figured out.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 90510017 and 50878123)the National Basic Research Program of China (Grant No. 2007CB714104 )+1 种基金the Innovative Project for Postdoctor of Shandong Province (Grant No. 200803037)the Research Project of SUST Spring Bud (Grant No. 2008AZZ107)
文摘This paper presents a model to simulate the safe behavior of Dagangshan arch dam with a rate-dependency anisotropic damage model. This model considers the damage of asymmetry and anisotropy under cyclic loading of tension and compression, and it is used in the compiled finite element code. The material parameters used in the model can be identified from uniaxial static and dynamic experiments. Thereafter, it is used for analyzing damage and failure patterns of the dam subjected to water pressure and strong earthquakes. The numerical results show that it is necessary to consider both asymmetry between tension and compression and anisotropy of damage. Severe damage regions of the dam reveal brittle and risky positions clearly. Meanwhile damage patterns show the failure trend and safety behaviors of the dam. These results match well with that of the experiments carried out in DUT. The proposed model may be used to predict the damage patterns and potential failure modes of concrete structures like the dam. And the aseismic performance of the dam can be figured out.