移动传感器网络的物理层安全问题日益复杂,已经成为了一个研究热点。为了及时处理网络安全事件,研究了移动传感器网络的安全性能预测,提出了一种基于灰狼优化广义回归(Grey Wolf Optimization-Generalized Regression,GWO-GR)神经网络...移动传感器网络的物理层安全问题日益复杂,已经成为了一个研究热点。为了及时处理网络安全事件,研究了移动传感器网络的安全性能预测,提出了一种基于灰狼优化广义回归(Grey Wolf Optimization-Generalized Regression,GWO-GR)神经网络的安全性能智能预测方法。该方法利用发射天线选择策略,推导了非零安全容量概率性能的精确闭合表达式。仿真比较了所提方法、反向传播神经网络、广义回归神经网络、支持向量机等方法,结果表明,所提方法可以实现更好的预测性能,提高安全性能预测的实时性。展开更多
文摘移动传感器网络的物理层安全问题日益复杂,已经成为了一个研究热点。为了及时处理网络安全事件,研究了移动传感器网络的安全性能预测,提出了一种基于灰狼优化广义回归(Grey Wolf Optimization-Generalized Regression,GWO-GR)神经网络的安全性能智能预测方法。该方法利用发射天线选择策略,推导了非零安全容量概率性能的精确闭合表达式。仿真比较了所提方法、反向传播神经网络、广义回归神经网络、支持向量机等方法,结果表明,所提方法可以实现更好的预测性能,提高安全性能预测的实时性。