Influenza A virus poses a great threat to global health, and oseltamivir (trade marked as Tamiflu), which targets influenza surface glycoprotein neuraminidase (NA), is used clinically as a major anti-influenza treatme...Influenza A virus poses a great threat to global health, and oseltamivir (trade marked as Tamiflu), which targets influenza surface glycoprotein neuraminidase (NA), is used clinically as a major anti-influenza treatment. However, certain substitutions in NA can render an influenza virus resistant to this drug. In this study, using a lentiviral pseudotyping system, which alleviates the safety concerns of studying highly pathogenic influenza viruses such as avian influenza H5N1, that utilizes influenza surface glycoproteins (hemagglutinin or HA, and NA) and an HIV-core combined with a luciferase reporter gene as a surrogate assay, we first assessed the functionality of NA by measuring pseudovirion release in the absence or presence of oseltamivir. We demonstrated that oseltamivir displays a dose-dependent inhibition on NA activity. In contrast, a mutant NA (H274Y) is more resistant to oseltamivir treatment. In addition, the effects of several previously reported substitution NA mutants were examined as well. Our results demonstrate that this lentivirus-based pseudotyping system provides a quick, safe, and effective way to assess resistance to neuraminidase inhibitors. And we believe that as new mutations appear in influenza isolates, their impact on the effectiveness of current and future anti-NA can be quickly and reliably evaluated by this assay.展开更多
Environmental problems caused by the development of nanotechnology have threatened human health. Investigating the biomedical effects of nanomaterials can help to solve these environmental safety issues. In studies on...Environmental problems caused by the development of nanotechnology have threatened human health. Investigating the biomedical effects of nanomaterials can help to solve these environmental safety issues. In studies on the biomedical effects of nanomaterials, several types of novel nanoscale probes that allow reliable, sensitive, accurate and rapid biomedical detection have emerged. We summarize recent developments in three categories of these nanoprobes, including noble metal nanocluster probes, carbon-based nanostructured probes, and unnatural amino acid-based probes. Besides reviewing the utility of different nanoprobes in cell imaging and protein detection, we also discuss the molecular mechanism of nanoprobe detection. Perspectives of novel nanoprobe design based on molecular details of biomedical detection are presented.展开更多
文摘Influenza A virus poses a great threat to global health, and oseltamivir (trade marked as Tamiflu), which targets influenza surface glycoprotein neuraminidase (NA), is used clinically as a major anti-influenza treatment. However, certain substitutions in NA can render an influenza virus resistant to this drug. In this study, using a lentiviral pseudotyping system, which alleviates the safety concerns of studying highly pathogenic influenza viruses such as avian influenza H5N1, that utilizes influenza surface glycoproteins (hemagglutinin or HA, and NA) and an HIV-core combined with a luciferase reporter gene as a surrogate assay, we first assessed the functionality of NA by measuring pseudovirion release in the absence or presence of oseltamivir. We demonstrated that oseltamivir displays a dose-dependent inhibition on NA activity. In contrast, a mutant NA (H274Y) is more resistant to oseltamivir treatment. In addition, the effects of several previously reported substitution NA mutants were examined as well. Our results demonstrate that this lentivirus-based pseudotyping system provides a quick, safe, and effective way to assess resistance to neuraminidase inhibitors. And we believe that as new mutations appear in influenza isolates, their impact on the effectiveness of current and future anti-NA can be quickly and reliably evaluated by this assay.
基金the National Natural Science Foundation of China (11404333, 31571026)the National Key Basic Research Program of China (2013CB933704)
文摘Environmental problems caused by the development of nanotechnology have threatened human health. Investigating the biomedical effects of nanomaterials can help to solve these environmental safety issues. In studies on the biomedical effects of nanomaterials, several types of novel nanoscale probes that allow reliable, sensitive, accurate and rapid biomedical detection have emerged. We summarize recent developments in three categories of these nanoprobes, including noble metal nanocluster probes, carbon-based nanostructured probes, and unnatural amino acid-based probes. Besides reviewing the utility of different nanoprobes in cell imaging and protein detection, we also discuss the molecular mechanism of nanoprobe detection. Perspectives of novel nanoprobe design based on molecular details of biomedical detection are presented.