The existing network security management systems are unable either to provide users with useful security situation and risk assessment, or to aid administrators to make right and timely decisions based on the current ...The existing network security management systems are unable either to provide users with useful security situation and risk assessment, or to aid administrators to make right and timely decisions based on the current state of network. These disadvantages always put the whole network security management at high risk. This paper establishes a simulation environment, captures the alerts as the experimental data and adopts statistical analysis to seek the vulnerabilities of the services provided by the hosts in the network. According to the factors of the network, the paper introduces the two concepts: Situational Meta and Situational Weight to depict the total security situation. A novel hierarchical algorithm based on analytic hierarchy process (AHP) is proposed to analyze the hierarchy of network and confirm the weighting coefficients. The algorithm can be utilized for modeling security situation, and determining its mathematical expression. Coupled with the statistical results, this paper simulates the security situational trends. Finally, the analysis of the simulation results proves the algorithm efficient and applicable, and provides us with an academic foundation for the implementation in the security situation展开更多
Security analysis of public-key cryptosystems is of fundamental significance for both theoretical research and applications in cryptography. In particular, the security of widely used public-key cryptosystems merits d...Security analysis of public-key cryptosystems is of fundamental significance for both theoretical research and applications in cryptography. In particular, the security of widely used public-key cryptosystems merits deep research to protect against new types of attacks. It is therefore highly meaningful to research cryptanalysis in the quantum computing environment. Shor proposed a wellknown factoring algorithm by finding the prime factors of a number n =pq, which is exponentially faster than the best known classical algorithm. The idea behind Shor's quantum factoring algorithm is a straightforward programming consequence of the following proposition: to factor n, it suffices to find the order r; once such an r is found, one can compute gcd( a^(r/2) ±1, n)=p or q. For odd values of r it is assumed that the factors of n cannot be found(since a^(r/2) is not generally an integer). That is, the order r must be even. This restriction can be removed, however, by working from another angle. Based on the quantum inverse Fourier transform and phase estimation, this paper presents a new polynomial-time quantum algorithm for breaking RSA, without explicitly factoring the modulus n. The probability of success of the new algorithm is greater than 4φ( r)/π~2 r, exceeding that of the existing quantum algorithm forattacking RSA based on factorization. In constrast to the existing quantum algorithm for attacking RSA, the order r of the fixed point C for RSA does not need to be even. It changed the practices that cryptanalysts try to recover the private-key, directly from recovering the plaintext M to start, a ciphertext-only attack attacking RSA is proposed.展开更多
For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm c...For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm called node cooperation based location secure verification (NCBLSV) algorithm is proposed. NCBLSV could verify malicious nodes by contrasting neighbor nodes and nodes under beam width angle using an adaptive array antenna at a base point. Simulation experiments are con- ducted to evaluate the performance of this algorithm by varying the communication range and the an- tenna beam width angle. Results show that NCBLSV algorithm has high probability of successful ma- licious nodes detection and low probability of false nodes detection. Thus, it is proved that the NCBLSV algorithm is useful and necessary in the wireless sensor networks security.展开更多
基金Supported by the High Technology Research and Development Programme of China (No. 2003AA142160) and the National Natural Science Foundation of China (No. 60605019).
文摘The existing network security management systems are unable either to provide users with useful security situation and risk assessment, or to aid administrators to make right and timely decisions based on the current state of network. These disadvantages always put the whole network security management at high risk. This paper establishes a simulation environment, captures the alerts as the experimental data and adopts statistical analysis to seek the vulnerabilities of the services provided by the hosts in the network. According to the factors of the network, the paper introduces the two concepts: Situational Meta and Situational Weight to depict the total security situation. A novel hierarchical algorithm based on analytic hierarchy process (AHP) is proposed to analyze the hierarchy of network and confirm the weighting coefficients. The algorithm can be utilized for modeling security situation, and determining its mathematical expression. Coupled with the statistical results, this paper simulates the security situational trends. Finally, the analysis of the simulation results proves the algorithm efficient and applicable, and provides us with an academic foundation for the implementation in the security situation
基金partially supported by he State Key Program of National Natural Science of China No. 61332019Major State Basic Research Development Program of China (973 Program) No. 2014CB340601+1 种基金the National Science Foundation of China No. 61202386, 61402339the National Cryptography Development Fund No. MMJJ201701304
文摘Security analysis of public-key cryptosystems is of fundamental significance for both theoretical research and applications in cryptography. In particular, the security of widely used public-key cryptosystems merits deep research to protect against new types of attacks. It is therefore highly meaningful to research cryptanalysis in the quantum computing environment. Shor proposed a wellknown factoring algorithm by finding the prime factors of a number n =pq, which is exponentially faster than the best known classical algorithm. The idea behind Shor's quantum factoring algorithm is a straightforward programming consequence of the following proposition: to factor n, it suffices to find the order r; once such an r is found, one can compute gcd( a^(r/2) ±1, n)=p or q. For odd values of r it is assumed that the factors of n cannot be found(since a^(r/2) is not generally an integer). That is, the order r must be even. This restriction can be removed, however, by working from another angle. Based on the quantum inverse Fourier transform and phase estimation, this paper presents a new polynomial-time quantum algorithm for breaking RSA, without explicitly factoring the modulus n. The probability of success of the new algorithm is greater than 4φ( r)/π~2 r, exceeding that of the existing quantum algorithm forattacking RSA based on factorization. In constrast to the existing quantum algorithm for attacking RSA, the order r of the fixed point C for RSA does not need to be even. It changed the practices that cryptanalysts try to recover the private-key, directly from recovering the plaintext M to start, a ciphertext-only attack attacking RSA is proposed.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2004AA001210) and the National Natural Science Foundation of China (No. 60532030).
文摘For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm called node cooperation based location secure verification (NCBLSV) algorithm is proposed. NCBLSV could verify malicious nodes by contrasting neighbor nodes and nodes under beam width angle using an adaptive array antenna at a base point. Simulation experiments are con- ducted to evaluate the performance of this algorithm by varying the communication range and the an- tenna beam width angle. Results show that NCBLSV algorithm has high probability of successful ma- licious nodes detection and low probability of false nodes detection. Thus, it is proved that the NCBLSV algorithm is useful and necessary in the wireless sensor networks security.