As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep co...As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method.展开更多
Monitoring and analysis of daily gas concentrations at a mining face is a vital task on safety production and security management in the coal-mining industry. This study addresses modeling and prediction of daily gas ...Monitoring and analysis of daily gas concentrations at a mining face is a vital task on safety production and security management in the coal-mining industry. This study addresses modeling and prediction of daily gas concentration variations based on the elliptic orbit model. The model describes the hourly variation in daily gas concentration by mapping its time-series into the polar coordinates to create its elliptic orbit trace for further analysis. Experiments show workability of the proposed method that daily gas concentration variation at a mining face of one coal mine in China is well described by the elliptic orbit model. Result analysis and performance comparison of the proposed elliptic orbit model with the classical AR model on the same prediction tasks indicate potentiality of the proposed elliptic orbit model,which presents a vivid approach for modeling and forecasting daily gas concentration variations in an intuitive and concise way.展开更多
In order to evaluate the safety production situation of the coal mine effectively,selected the indicators about mine production safety, applied entropy method to determinethe objective weight of each index, calculated...In order to evaluate the safety production situation of the coal mine effectively,selected the indicators about mine production safety, applied entropy method to determinethe objective weight of each index, calculated the distance and close degree between themines and the ideal point and negative ideal point, and then evaluated the safety productionsituation of the mines according to the close degree.The results show that the methodprovides a reasonable, concise and more objective idea to evaluate the safety productionsituation of the mines.展开更多
Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phospho...Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phosphorus mines encounters great challenges. For this purpose, a man-machine-environment system composed of evaluation indexes was established, and the grading standards of indexes were defined. Firstly, the measurements of 39 qualitative indexes were obtained through the survey data. According to the measured values of 31 quantitative indexes, the measurements of quantitative indexes were calculated by linear measurement function(LM) and other three functions. Then the singleindex measurement evaluation matrixes were established. Secondly, the entropy weight method was used to determine the weights of each index directly. The analytic hierarchy process(AHP) was also applied to calculate the weights of index and index factor hierarchies after the established hierarchical model. The weights of system hierarchies were given by the grid-based fuzzy Borda method(GFB). The comprehensive weights were determined by the combination method of AHP and GFB(CAG). Furthermore, the multi-index comprehensive measurement evaluation vectors were obtained.Thirdly, the vectors were evaluated by the credible degree recognition(CDR) and the maximum membership(TMM)criteria. Based on the above functions, methods, and criteria, 16 combination evaluation methods were recommended.Finally, the clean and safe production grade of Kaiyang phosphate mine in China was evaluated. The results show that the LM-CAG-CDR is the most reasonable method, which can not only determine the clean and safe production grade of phosphorus mines, but also improve the development level of clean and safe mining of phosphorus mines for guidance.In addition, some beneficial suggestions and measures were also proposed to advance the clean and safe production grade of Kaiyang phosphorus mine.展开更多
Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved ...Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.展开更多
It is important to study the methane transport phenomenon in a longwall panel under descensional ventilation conditions. In this paper the gob area is divided into a number of nodes to represent the rectangular percol...It is important to study the methane transport phenomenon in a longwall panel under descensional ventilation conditions. In this paper the gob area is divided into a number of nodes to represent the rectangular percolating elements. The connections between nodes (elements) become branches,so that a network can be formed. Using the mechanics of porous media fluid flow, the mathematical model of air and gas flows has been established. Based on the existing ground pressure theories,the porosity of the inhomogeneous porous media in the gob can be given. In computer simulation it is considered that air pressure and temperature are functions of position ; air density, viscosity, and natural ventilation pressure are functions of temperature,pressure and methane concentration,and the resistance varies with air density and viscosity. Finally,the calculation results are given to show the differences between ascensional and descensional ventilation methods.展开更多
A new biofilter technology was used to control the methane concentration in the coal mine. The results indicate that the biofilter achieves a steady methane removal capacity of 1 470 mg/(Loh) after 30 days start-up....A new biofilter technology was used to control the methane concentration in the coal mine. The results indicate that the biofilter achieves a steady methane removal capacity of 1 470 mg/(Loh) after 30 days start-up. More than 90% of the methane can be removed with an empty bed retention time (EBRT) of 5.6 min when the inlet concentration of methane (IMC) is lower than 70 mg/L (10%, V/V) and about 80% when IMC is at 105 mg/L (15%, V/V). The biofilter is still a reliable method to control methane concentration as an auxiliary means to boost coal mine production safety together with aggrandized ventilation and drainage technologies, even though the removal efficiency of methane is not very satisfactory with a high IMC (〉10%) or a short EBRT (〈3.8 min).展开更多
基金Financial support for this project, provided by the National Basic Research Program of China (No. 2006CB202200)the National Major Project of Ministry of Education (No.304005) the Program for Changjiang Scholars and Innovative Research Team in University of China (No.IRT0656), is gratefully acknowledged
文摘As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method.
基金supported by the Scientific Research Fund of Hunan Provincial Science and Technology Department (No. 2013GK3090)the National Natural Science Foundation of China (Nos. 51374107 and 51577057)the Research Fund of Hunan Provincial Natural Science Foundation (No. 13JJ8014)
文摘Monitoring and analysis of daily gas concentrations at a mining face is a vital task on safety production and security management in the coal-mining industry. This study addresses modeling and prediction of daily gas concentration variations based on the elliptic orbit model. The model describes the hourly variation in daily gas concentration by mapping its time-series into the polar coordinates to create its elliptic orbit trace for further analysis. Experiments show workability of the proposed method that daily gas concentration variation at a mining face of one coal mine in China is well described by the elliptic orbit model. Result analysis and performance comparison of the proposed elliptic orbit model with the classical AR model on the same prediction tasks indicate potentiality of the proposed elliptic orbit model,which presents a vivid approach for modeling and forecasting daily gas concentration variations in an intuitive and concise way.
文摘In order to evaluate the safety production situation of the coal mine effectively,selected the indicators about mine production safety, applied entropy method to determinethe objective weight of each index, calculated the distance and close degree between themines and the ideal point and negative ideal point, and then evaluated the safety productionsituation of the mines according to the close degree.The results show that the methodprovides a reasonable, concise and more objective idea to evaluate the safety productionsituation of the mines.
基金Project(51974362) supported by the National Natural Science Foundation of ChinaProject(2282020cxqd055) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021-QYC-10050-25631) supported by the Department of Emergency Management of Hunan Province,China。
文摘Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phosphorus mines encounters great challenges. For this purpose, a man-machine-environment system composed of evaluation indexes was established, and the grading standards of indexes were defined. Firstly, the measurements of 39 qualitative indexes were obtained through the survey data. According to the measured values of 31 quantitative indexes, the measurements of quantitative indexes were calculated by linear measurement function(LM) and other three functions. Then the singleindex measurement evaluation matrixes were established. Secondly, the entropy weight method was used to determine the weights of each index directly. The analytic hierarchy process(AHP) was also applied to calculate the weights of index and index factor hierarchies after the established hierarchical model. The weights of system hierarchies were given by the grid-based fuzzy Borda method(GFB). The comprehensive weights were determined by the combination method of AHP and GFB(CAG). Furthermore, the multi-index comprehensive measurement evaluation vectors were obtained.Thirdly, the vectors were evaluated by the credible degree recognition(CDR) and the maximum membership(TMM)criteria. Based on the above functions, methods, and criteria, 16 combination evaluation methods were recommended.Finally, the clean and safe production grade of Kaiyang phosphate mine in China was evaluated. The results show that the LM-CAG-CDR is the most reasonable method, which can not only determine the clean and safe production grade of phosphorus mines, but also improve the development level of clean and safe mining of phosphorus mines for guidance.In addition, some beneficial suggestions and measures were also proposed to advance the clean and safe production grade of Kaiyang phosphorus mine.
基金Supported by the National Natural Science Foundation of China (51075029)
文摘Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.
文摘It is important to study the methane transport phenomenon in a longwall panel under descensional ventilation conditions. In this paper the gob area is divided into a number of nodes to represent the rectangular percolating elements. The connections between nodes (elements) become branches,so that a network can be formed. Using the mechanics of porous media fluid flow, the mathematical model of air and gas flows has been established. Based on the existing ground pressure theories,the porosity of the inhomogeneous porous media in the gob can be given. In computer simulation it is considered that air pressure and temperature are functions of position ; air density, viscosity, and natural ventilation pressure are functions of temperature,pressure and methane concentration,and the resistance varies with air density and viscosity. Finally,the calculation results are given to show the differences between ascensional and descensional ventilation methods.
文摘A new biofilter technology was used to control the methane concentration in the coal mine. The results indicate that the biofilter achieves a steady methane removal capacity of 1 470 mg/(Loh) after 30 days start-up. More than 90% of the methane can be removed with an empty bed retention time (EBRT) of 5.6 min when the inlet concentration of methane (IMC) is lower than 70 mg/L (10%, V/V) and about 80% when IMC is at 105 mg/L (15%, V/V). The biofilter is still a reliable method to control methane concentration as an auxiliary means to boost coal mine production safety together with aggrandized ventilation and drainage technologies, even though the removal efficiency of methane is not very satisfactory with a high IMC (〉10%) or a short EBRT (〈3.8 min).