大规模安全约束机组组合(security constrained unit commitment,SCUC)问题的混合整数线性规划(mixed integer linear programming,MILP)模型因其高维、非凸的特点导致求解困难,尤其在考虑故障态安全约束后模型规模骤增,MILP算法常遇到...大规模安全约束机组组合(security constrained unit commitment,SCUC)问题的混合整数线性规划(mixed integer linear programming,MILP)模型因其高维、非凸的特点导致求解困难,尤其在考虑故障态安全约束后模型规模骤增,MILP算法常遇到收敛间隙下降瓶颈问题。为满足现货市场出清对SCUC问题求解时间的要求,提出了基于热启动的快速求解方法,从待求模型的一个可行解出发,根据节点边际电价和机组收益分析进行整数变量固定,同时削减无约束力的安全约束,以缩减模型规模,加快收敛进程。仿真结果表明:所提方法能够大幅缩减SCUC模型规模,尤其对于考虑故障态安全约束的大规模SCUC问题,能有效克服收敛间隙下降瓶颈问题,求解效率提高特别显著。展开更多
安全约束机组组合(security-constrained unit commitment,SCUC)作为编制发电计划的核心环节,在电力系统优化调度等方面具有十分重要的意义。因此,该文首先从物理模型和求解方法简要概述了SCUC问题。然后,从多目标、多元化决策变量、不...安全约束机组组合(security-constrained unit commitment,SCUC)作为编制发电计划的核心环节,在电力系统优化调度等方面具有十分重要的意义。因此,该文首先从物理模型和求解方法简要概述了SCUC问题。然后,从多目标、多元化决策变量、不确定性、多时间尺度与多元约束条件5个方面梳理了物理模型驱动的SCUC的研究进展,并分析了此类方法所面临的挑战。同时,重点总结归纳了现有基于人工智能技术和数据驱动的SCUC问题的研究成果,并分析了不同类型方法的特点、优势和缺陷。最后提出了对未来基于数据驱动的SCUC研究方向的相关思考。展开更多
文摘大规模安全约束机组组合(security constrained unit commitment,SCUC)问题的混合整数线性规划(mixed integer linear programming,MILP)模型因其高维、非凸的特点导致求解困难,尤其在考虑故障态安全约束后模型规模骤增,MILP算法常遇到收敛间隙下降瓶颈问题。为满足现货市场出清对SCUC问题求解时间的要求,提出了基于热启动的快速求解方法,从待求模型的一个可行解出发,根据节点边际电价和机组收益分析进行整数变量固定,同时削减无约束力的安全约束,以缩减模型规模,加快收敛进程。仿真结果表明:所提方法能够大幅缩减SCUC模型规模,尤其对于考虑故障态安全约束的大规模SCUC问题,能有效克服收敛间隙下降瓶颈问题,求解效率提高特别显著。
文摘安全约束机组组合(security-constrained unit commitment,SCUC)作为编制发电计划的核心环节,在电力系统优化调度等方面具有十分重要的意义。因此,该文首先从物理模型和求解方法简要概述了SCUC问题。然后,从多目标、多元化决策变量、不确定性、多时间尺度与多元约束条件5个方面梳理了物理模型驱动的SCUC的研究进展,并分析了此类方法所面临的挑战。同时,重点总结归纳了现有基于人工智能技术和数据驱动的SCUC问题的研究成果,并分析了不同类型方法的特点、优势和缺陷。最后提出了对未来基于数据驱动的SCUC研究方向的相关思考。