Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
The model of grey multi-attribute group decision-making (MAGDM) is studied, in which the attribute values are grey numbers. Based on the generalized dominance-based rough set approach (G-DR- SA), a synthetic secur...The model of grey multi-attribute group decision-making (MAGDM) is studied, in which the attribute values are grey numbers. Based on the generalized dominance-based rough set approach (G-DR- SA), a synthetic security evaluation method is presented. With-the grey MAGDM security evaluation model as its foundation, the extension of technique for order performance by similarity to ideal solution (TOPSIS) integrates the evaluation of each decision-maker (DM) into a group's consensus and obtains the expected evaluation results of information system. Via the quality of sorting (QoS) of G-DRSA, the inherent information hidden in data is uncovered, and the security attribute weight and DMs' weight are rationally obtained. Taking the computer networks in a certain university as objects, the example illustrates that this method can effectively remove the bottleneck of the grey MAGDM model and has practical significance in the synthetic security evaluation.展开更多
Security assessment can help understand the security conditions of an information system and yield results highly conducive to the solution of security problems in it. Taking the computer networks in a certain univers...Security assessment can help understand the security conditions of an information system and yield results highly conducive to the solution of security problems in it. Taking the computer networks in a certain university as samples, this paper, with the information system security assessment model as its foundation, proposes a multi-attribute group decision-making (MAGDM) security assessment method based on a variable consistency dominance-based rough set approach (VC-DRSA). This assessment method combines VC-DRSA with the analytic hierarchy process (AHP), uncovers the inherent information hidden in data via the quality of sorting (QoS), and makes a synthetic security assessment of the information system after determining the security attribute weight. The sample findings show that this method can effectively remove the bottleneck of MAGDM, thus assuming practical significance in information system security assessment.展开更多
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n...A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.展开更多
The core of network security is the risk assessment. In this letter,a risk assessment method is introduced to estimate the wireless network security. The method,which combines Analytic Hier-archy Process (AHP) method ...The core of network security is the risk assessment. In this letter,a risk assessment method is introduced to estimate the wireless network security. The method,which combines Analytic Hier-archy Process (AHP) method and fuzzy logical method,is applied to the risk assessment. Fuzzy logical method is applied to judge the important degree of each factor in the aspects of the probability,the influence and the uncontrollability,not to directly judge the important degree itself. The risk as-sessment is carved up 3 layers applying AHP method,the sort weight of the third layer is calculated by fuzzy logical method. Finally,the important degree is calculated by AHP method. By comparing the important degree of each factor,the risk which can be controlled by taking measures is known. The study of the case shows that the method can be easily used to the risk assessment of the wireless network security and its results conform to the actual situation.展开更多
In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group dec...In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group decision- making (MAGDM) security assessment method based on the technique for order performance by similarity to ideal solution (TOPSIS). For IllS with preference information, combining with dominance-based rough set approach (DRSA), the effect of incomplete interval-valued information on decision results is discussed. For the imprecise judgment matrices, the security attribute weight can be obtained using Gibbs sampling. A numerical example shows that the proposed method can acquire some valuable knowledge hidden in the incomplete interval-valued information. The effectiveness of the proposed method in the synthetic security assessment for IIIS is verified.展开更多
The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and G...The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and GIS (Geographic Information Systems). Regarding the safety evaluation method, firstly, the similarity in safety was focused on while taking into consideration road blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the congestion rates of evacuation routes using ACO simulations were estimated. Based on these results, the multiple evacuation routes extracted were visualized on digital maps by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake disaster is high, is made possible. As the safety evaluation method is based on public information, by obtaining the same geographic information as the present study, it is effective in other areas regardless of whether the information is of the past and future. Therefore, in addition to spatial reproducibility, the safety evaluation method also has high temporal reproducibility. Because safety evaluations are conducted on evacuation routes based on quantified data, highly safe evacuation routes that are selected have been quantitatively evaluated, and thus serve as an effective indicator when selecting evacuation routes.展开更多
This paper first describes the basic theory of BP neural network algorithm, defects and improved methods, establishes a computer network security evaluation index system, explores the computer network security evaluat...This paper first describes the basic theory of BP neural network algorithm, defects and improved methods, establishes a computer network security evaluation index system, explores the computer network security evaluation method based on BP neural network, and has designed to build the evaluation model, and shows that the method is feasible through the MATLAB simulation experiments.展开更多
The Chinese hash algorithm SM3 is verified to be secure enough,but improper hardware implementation may lead to leakage.A masking scheme for SM3 algorithm is proposed to ensure the security of SM3 based Message Authen...The Chinese hash algorithm SM3 is verified to be secure enough,but improper hardware implementation may lead to leakage.A masking scheme for SM3 algorithm is proposed to ensure the security of SM3 based Message Authentication Code(MAC).Our scheme was implemented in hardware,which utilizes hardware oriented secure conversion techniques between boolean and arithmetic masking.Security evaluation based on SAKURA-G FPGA board has been done with 2000 power traces from 2000 random plaintexts with random plaintext masks and random key masks.It has been verified that the masked SM3 hardware implementation shows no intermediate value leakage as expected.Our masked SM3 hardware can resist first-order correlation power attack(CPA) and collision correlation attack.展开更多
A number of contingencies simulated during dynamic security assessment do not generate unacceptable values of power system state variables, due to their small influence on system operation. Their exclusion from the se...A number of contingencies simulated during dynamic security assessment do not generate unacceptable values of power system state variables, due to their small influence on system operation. Their exclusion from the set of contingencies to be simulated in the security assessment would achieve a significant reduction in computation time. This paper defines a critical contingencies selection method for on-line dynamic security assessment. The selection method results from an off-line dynamical analysis, which covers typical scenarios and also covers various related aspects like frequency, voltage, and angle analyses among others. Indexes measured over these typical scenarios are used to train neural networks, capable of performing on-line estimation of a critical contingencies list according to the system state.展开更多
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
文摘The model of grey multi-attribute group decision-making (MAGDM) is studied, in which the attribute values are grey numbers. Based on the generalized dominance-based rough set approach (G-DR- SA), a synthetic security evaluation method is presented. With-the grey MAGDM security evaluation model as its foundation, the extension of technique for order performance by similarity to ideal solution (TOPSIS) integrates the evaluation of each decision-maker (DM) into a group's consensus and obtains the expected evaluation results of information system. Via the quality of sorting (QoS) of G-DRSA, the inherent information hidden in data is uncovered, and the security attribute weight and DMs' weight are rationally obtained. Taking the computer networks in a certain university as objects, the example illustrates that this method can effectively remove the bottleneck of the grey MAGDM model and has practical significance in the synthetic security evaluation.
基金Supported by the High Technology Research and Development Programme of China (No. 2007AA01Z473)
文摘Security assessment can help understand the security conditions of an information system and yield results highly conducive to the solution of security problems in it. Taking the computer networks in a certain university as samples, this paper, with the information system security assessment model as its foundation, proposes a multi-attribute group decision-making (MAGDM) security assessment method based on a variable consistency dominance-based rough set approach (VC-DRSA). This assessment method combines VC-DRSA with the analytic hierarchy process (AHP), uncovers the inherent information hidden in data via the quality of sorting (QoS), and makes a synthetic security assessment of the information system after determining the security attribute weight. The sample findings show that this method can effectively remove the bottleneck of MAGDM, thus assuming practical significance in information system security assessment.
文摘A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.
基金the National Natural Science Foundation of China (No.60573036).
文摘The core of network security is the risk assessment. In this letter,a risk assessment method is introduced to estimate the wireless network security. The method,which combines Analytic Hier-archy Process (AHP) method and fuzzy logical method,is applied to the risk assessment. Fuzzy logical method is applied to judge the important degree of each factor in the aspects of the probability,the influence and the uncontrollability,not to directly judge the important degree itself. The risk as-sessment is carved up 3 layers applying AHP method,the sort weight of the third layer is calculated by fuzzy logical method. Finally,the important degree is calculated by AHP method. By comparing the important degree of each factor,the risk which can be controlled by taking measures is known. The study of the case shows that the method can be easily used to the risk assessment of the wireless network security and its results conform to the actual situation.
基金Supported by the National Natural Science Foundation of China(No.60605019)
文摘In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group decision- making (MAGDM) security assessment method based on the technique for order performance by similarity to ideal solution (TOPSIS). For IllS with preference information, combining with dominance-based rough set approach (DRSA), the effect of incomplete interval-valued information on decision results is discussed. For the imprecise judgment matrices, the security attribute weight can be obtained using Gibbs sampling. A numerical example shows that the proposed method can acquire some valuable knowledge hidden in the incomplete interval-valued information. The effectiveness of the proposed method in the synthetic security assessment for IIIS is verified.
文摘The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and GIS (Geographic Information Systems). Regarding the safety evaluation method, firstly, the similarity in safety was focused on while taking into consideration road blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the congestion rates of evacuation routes using ACO simulations were estimated. Based on these results, the multiple evacuation routes extracted were visualized on digital maps by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake disaster is high, is made possible. As the safety evaluation method is based on public information, by obtaining the same geographic information as the present study, it is effective in other areas regardless of whether the information is of the past and future. Therefore, in addition to spatial reproducibility, the safety evaluation method also has high temporal reproducibility. Because safety evaluations are conducted on evacuation routes based on quantified data, highly safe evacuation routes that are selected have been quantitatively evaluated, and thus serve as an effective indicator when selecting evacuation routes.
文摘This paper first describes the basic theory of BP neural network algorithm, defects and improved methods, establishes a computer network security evaluation index system, explores the computer network security evaluation method based on BP neural network, and has designed to build the evaluation model, and shows that the method is feasible through the MATLAB simulation experiments.
基金supported by the National Major Program "Core of Electronic Devices,High-End General Chips,and Basis of Software Products" of the Ministry of Industry and Information Technology of China (Nos.2014ZX01032205,2014ZX01032401001-Z05)the National Natural Science Foundation of China(No.61402252) "12th Five-Year Plan" The National Development Foundation for Cryptological Research(No. MMJJ201401009)
文摘The Chinese hash algorithm SM3 is verified to be secure enough,but improper hardware implementation may lead to leakage.A masking scheme for SM3 algorithm is proposed to ensure the security of SM3 based Message Authentication Code(MAC).Our scheme was implemented in hardware,which utilizes hardware oriented secure conversion techniques between boolean and arithmetic masking.Security evaluation based on SAKURA-G FPGA board has been done with 2000 power traces from 2000 random plaintexts with random plaintext masks and random key masks.It has been verified that the masked SM3 hardware implementation shows no intermediate value leakage as expected.Our masked SM3 hardware can resist first-order correlation power attack(CPA) and collision correlation attack.
文摘A number of contingencies simulated during dynamic security assessment do not generate unacceptable values of power system state variables, due to their small influence on system operation. Their exclusion from the set of contingencies to be simulated in the security assessment would achieve a significant reduction in computation time. This paper defines a critical contingencies selection method for on-line dynamic security assessment. The selection method results from an off-line dynamical analysis, which covers typical scenarios and also covers various related aspects like frequency, voltage, and angle analyses among others. Indexes measured over these typical scenarios are used to train neural networks, capable of performing on-line estimation of a critical contingencies list according to the system state.