期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8n的采掘工作面小目标检测方法
1
作者 薛小勇 何新宇 +2 位作者 姚超修 蒋泽 潘红光 《工矿自动化》 CSCD 北大核心 2024年第8期105-111,共7页
为有效检测和识别煤矿井下采掘工作面人员是否佩戴安全防护装置,针对井下光照条件差、安全防护装备目标尺寸小且颜色与背景相似等情况,提出了一种基于改进YOLOv8n的采掘工作面小目标检测方法。在YOLOv8n骨干网络C2f模块中融合动态蛇形卷... 为有效检测和识别煤矿井下采掘工作面人员是否佩戴安全防护装置,针对井下光照条件差、安全防护装备目标尺寸小且颜色与背景相似等情况,提出了一种基于改进YOLOv8n的采掘工作面小目标检测方法。在YOLOv8n骨干网络C2f模块中融合动态蛇形卷积(DSConv),构建C2f−DSConv模块,以提高模型提取多尺度特征的能力;在Neck层引入极化自注意力(PSA)机制,以减少信息损失,提高特征表达能力;在Head层增设1个专门针对小目标的检测头,形成4检测头结构,以扩大模型检测范围。实验结果表明,改进YOLOv8n模型对井下人员及其所佩戴安全帽、矿灯、口罩、自救器检测的平均精度分别为98.3%,95.8%,89.9%,87.2%,90.8%,平均精度均值为92.4%,优于Faster R−CNN,YOLOv5s,YOLOv7,YOLOv8n模型,且检测速度达208帧/s,满足煤矿井下目标检测精度和实时性要求。 展开更多
关键词 采掘工作面 小目标检测 YOLOv8n 安全防护装备检测 多尺度目标识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部