Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this in...Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this investigation,we performed a comprehensive analysis encompassing genome sequencing,genomic analysis,and phenotypic characterization of L.reuteri Q35,an exceptionally proficient producer of reuterin.The whole genome sequencing results showed that the complete genome sequence spans 2145158 bp with a GC content of 38.9%and encompasses 2121 genes.Initial identification of antibiotic-resistant genes,virulence factors,and toxin-coding genes in the genome substantiated the strain’s low-risk status.Subsequent tests for antibiotic resistance,acute oral toxicology,and hemolysis further confirmed its elevated safety level.The genome of L.reuteri Q35 was found to contain genes associated with adhesion and stress tolerance.Following exposure to artificial gastric juice and bile salt,the strain exhibited a higher survival rate and demonstrated a strong scavenging ability for hydroxyl free radicals in antioxidant capacity tests.These findings suggested that L.reuteri Q35 possesses unique probiotic properties.Additionally,the genome of strain Q35 harbors three truncated oxaloyl-CoA decarboxylase genes(oxc1,oxc2 and oxc3),overexpression of which resulted in a significant increase in ammonium oxalate degradation from 29.5%to 48.8%.These findings highlight that L.reuteri Q35 exhibits both favorable safety characteristics alongside beneficial properties,making it a promising candidate for treating metabolic disorders such as hyperoxaluria.展开更多
The properties of the high molecular water-absorbing compound sodium polyacrylate (SP) and its application in agriculture are reviewed;and its safety in application is also introduced.
This study was motivated by the world interest in the development of advanced processes of waste decomposition, due to the need of safer decomposition processes, particularly for the POPs (Persistent Organic Polluta...This study was motivated by the world interest in the development of advanced processes of waste decomposition, due to the need of safer decomposition processes, particularly for the POPs (Persistent Organic Pollutants) and the organochlorines. A tendency observed at several countries is the adoption of progressively more demanding legislation for the atmospheric emissions from the waste decomposition processes. The suitable final disposal of hazardous organic wastes such as PCBs (Polychlorinated Biphenyls), pesticides, herbicides and hospital residues constitutes a serious problem. In some point of their lifecycles, these wastes should be destroyed, in reason of the risk that they represent for the human being, animals and plants. The process involves a chemical reactor containing molten salts, such as sodium carbonate or some alkaline carbonates mixtures to decompose the organic waste. The decomposition is performed by submerged oxidation. Waste is injected below the surface of a turbulent salt bath along with the oxidizing agent. Decomposition of halogenated compounds, among which some pesticides, is particularly effective in molten salts. The process presents properties such as intrinsically safe control of organochlorine emissions. This work describes the process developed at IPEN/CNEN-SP (Nuclear and Energetic Research Institute/Brazilian Nuclear Energy Commission) for complete thermal decomposition of hazardous wastes through oxidation submerged in molten salts.展开更多
Damage on surfaces often compromises the efficiency of some types of energy production, the safety and reliability of components, and ultimately increases costs. The environment can degrade the structural integrity of...Damage on surfaces often compromises the efficiency of some types of energy production, the safety and reliability of components, and ultimately increases costs. The environment can degrade the structural integrity of surfaces in service by the accumulation of large numbers of small destructive events, which based on the Central Limit Theorem leads to a Gaussian distribution of pit depth. In order to develop safety envelopes relating fracture loci with topological parameters of a brittle material, scatter plots were obtained and analyzed. Starting with an engineering surface, after 6 to 9 micrometers of average degradation depth, safety envelopes could be developed using average roughness and two other proposed parameters. Interestingly, maximum pit depth showed very low correlation with the location of fracture, at the early stage of degradation studied. This is attributed to relaxation of stress concentration at a given pit location due to the assuaging effect caused by neighboring pits. Additionally, energy at fracture was obtained, and a maximum relaxation region was observed. Analytical and experimental study of this region, as well as ductility effects are currently under research.展开更多
文摘Limosilactobacillus reuteri is a microbe intricately linked to humans and animal health.A thorough assessment of its safety and potential benefits is imperative prior to its application in human and animals.In this investigation,we performed a comprehensive analysis encompassing genome sequencing,genomic analysis,and phenotypic characterization of L.reuteri Q35,an exceptionally proficient producer of reuterin.The whole genome sequencing results showed that the complete genome sequence spans 2145158 bp with a GC content of 38.9%and encompasses 2121 genes.Initial identification of antibiotic-resistant genes,virulence factors,and toxin-coding genes in the genome substantiated the strain’s low-risk status.Subsequent tests for antibiotic resistance,acute oral toxicology,and hemolysis further confirmed its elevated safety level.The genome of L.reuteri Q35 was found to contain genes associated with adhesion and stress tolerance.Following exposure to artificial gastric juice and bile salt,the strain exhibited a higher survival rate and demonstrated a strong scavenging ability for hydroxyl free radicals in antioxidant capacity tests.These findings suggested that L.reuteri Q35 possesses unique probiotic properties.Additionally,the genome of strain Q35 harbors three truncated oxaloyl-CoA decarboxylase genes(oxc1,oxc2 and oxc3),overexpression of which resulted in a significant increase in ammonium oxalate degradation from 29.5%to 48.8%.These findings highlight that L.reuteri Q35 exhibits both favorable safety characteristics alongside beneficial properties,making it a promising candidate for treating metabolic disorders such as hyperoxaluria.
文摘The properties of the high molecular water-absorbing compound sodium polyacrylate (SP) and its application in agriculture are reviewed;and its safety in application is also introduced.
文摘This study was motivated by the world interest in the development of advanced processes of waste decomposition, due to the need of safer decomposition processes, particularly for the POPs (Persistent Organic Pollutants) and the organochlorines. A tendency observed at several countries is the adoption of progressively more demanding legislation for the atmospheric emissions from the waste decomposition processes. The suitable final disposal of hazardous organic wastes such as PCBs (Polychlorinated Biphenyls), pesticides, herbicides and hospital residues constitutes a serious problem. In some point of their lifecycles, these wastes should be destroyed, in reason of the risk that they represent for the human being, animals and plants. The process involves a chemical reactor containing molten salts, such as sodium carbonate or some alkaline carbonates mixtures to decompose the organic waste. The decomposition is performed by submerged oxidation. Waste is injected below the surface of a turbulent salt bath along with the oxidizing agent. Decomposition of halogenated compounds, among which some pesticides, is particularly effective in molten salts. The process presents properties such as intrinsically safe control of organochlorine emissions. This work describes the process developed at IPEN/CNEN-SP (Nuclear and Energetic Research Institute/Brazilian Nuclear Energy Commission) for complete thermal decomposition of hazardous wastes through oxidation submerged in molten salts.
文摘Damage on surfaces often compromises the efficiency of some types of energy production, the safety and reliability of components, and ultimately increases costs. The environment can degrade the structural integrity of surfaces in service by the accumulation of large numbers of small destructive events, which based on the Central Limit Theorem leads to a Gaussian distribution of pit depth. In order to develop safety envelopes relating fracture loci with topological parameters of a brittle material, scatter plots were obtained and analyzed. Starting with an engineering surface, after 6 to 9 micrometers of average degradation depth, safety envelopes could be developed using average roughness and two other proposed parameters. Interestingly, maximum pit depth showed very low correlation with the location of fracture, at the early stage of degradation studied. This is attributed to relaxation of stress concentration at a given pit location due to the assuaging effect caused by neighboring pits. Additionally, energy at fracture was obtained, and a maximum relaxation region was observed. Analytical and experimental study of this region, as well as ductility effects are currently under research.