首先证明,L<sup>2</sup>[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|<sup>2</sup>)dx<sup>1/2</sup>,三角函数系F<sub>1<...首先证明,L<sup>2</sup>[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|<sup>2</sup>)dx<sup>1/2</sup>,三角函数系F<sub>1</sub>={1/2<sup>1/2</sup>,cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF<sub>1</sub>为形如sum from k=0 to n(a<sub>k</sub>coskx+b<sub>k</sub>sinkx)的三角多项式的全体。C<sub>2π</sub>为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε】0,f∈2π,(?)T(x)=sum from k=0 to N(a<sub>k</sub>coskx+b<sub>k</sub>sinkx)使(?)|f(x)-T(x)|【展开更多
文摘首先证明,L<sup>2</sup>[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|<sup>2</sup>)dx<sup>1/2</sup>,三角函数系F<sub>1</sub>={1/2<sup>1/2</sup>,cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF<sub>1</sub>为形如sum from k=0 to n(a<sub>k</sub>coskx+b<sub>k</sub>sinkx)的三角多项式的全体。C<sub>2π</sub>为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε】0,f∈2π,(?)T(x)=sum from k=0 to N(a<sub>k</sub>coskx+b<sub>k</sub>sinkx)使(?)|f(x)-T(x)|【