期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
AF C^*—代数上的Schur积与完全有界映射 被引量:1
1
作者 纪培胜 赵凯 《数学学报(中文版)》 SCIE CSCD 北大核心 1999年第6期1009-1016,共8页
证明了AFC-代数B上的有界D-模映射是完全有界的,这里D是B的一个SVmasa.
关键词 AFC^*-代数 Schur积 完全有界映射 C^*代数
原文传递
向量空间和C^(*)-代数上的扩张理论
2
作者 包琪瑶 韩德广 刘锐 《曲阜师范大学学报(自然科学版)》 CAS 2022年第3期23-32,共10页
著名的Naimark定理和Stinespring扩张定理表明每一个正算子值测度都有投影值扩张,作用于C^(*)-代数上的每一个完全有界线性映射都可以扩张为有界*-同态,这些都是Hilbert扩张.然而,在交换和非交换情形下,对于任意算子值测度和线性映射,... 著名的Naimark定理和Stinespring扩张定理表明每一个正算子值测度都有投影值扩张,作用于C^(*)-代数上的每一个完全有界线性映射都可以扩张为有界*-同态,这些都是Hilbert扩张.然而,在交换和非交换情形下,对于任意算子值测度和线性映射,都有基于Banach空间的一般扩张理论存在.这种一般的扩张理论最终可得到有界线性映射和算子值测度的分类理论.该文简要介绍含幺元代数和向量空间上代数版本的线性系统扩张理论,通过引进典则扩张和万有扩张两种自然的扩张结构,给出所有的线性极小同态扩张的主要分类结果;从Stinespring扩张出发,介绍C^(*)-代数上完全有界线性映射的刻画并说明即使对交换的纯原子的von Neumann代数也存在没有Hilbert扩张的例子. 展开更多
关键词 线性系统 万有扩张 完全有界映射 C^(*)-代数
下载PDF
Nonexistence of Proper Holomorphic Maps Between Certain Classical Bounded Symmetric Domains 被引量:1
3
作者 Ngaiming MOK 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2008年第2期135-146,共12页
The author,motivated by his results on Hermitian metric rigidity,conjectured in [4] that a proper holomorphic mapping f:Ω→Ω′from an irreducible bounded symmetric domainΩof rank≥2 into a bounded symmetric domai... The author,motivated by his results on Hermitian metric rigidity,conjectured in [4] that a proper holomorphic mapping f:Ω→Ω′from an irreducible bounded symmetric domainΩof rank≥2 into a bounded symmetric domainΩ′is necessarily totally geodesic provided that r′:=rank(Ω′)≤rank(Ω):=r.The Conjecture was resolved in the affirmative by I.-H.Tsai [8].When the hypothesis r′≤r is removed,the structure of proper holomorphic maps f:Ω→Ω′is far from being understood,and the complexity in studying such maps depends very much on the difference r′-r,which is called the rank defect.The only known nontrivial non-equidimensional structure theorems on proper holomorphic maps are due to Z.-H.Tu [10],in which a rigidity theorem was proven for certain pairs of classical domains of type I,which implies nonexistence theorems for other pairs of such domains.For both results the rank defect is equal to 1,and a generaliza- tion of the rigidity result to cases of higher rank defects along the line of arguments of [10] has so far been inaccessible. In this article, the author produces nonexistence results for infinite series of pairs of (Ω→Ω′) of irreducible bounded symmetric domains of type I in which the rank defect is an arbitrarily prescribed positive integer. Such nonexistence results are obtained by exploiting the geometry of characteristic symmetric subspaces as introduced by N. Mok and L-H Tsai [6] and more generally invariantly geodesic subspaces as formalized in [8]. Our nonexistence results motivate the formulation of questions on proper holomorphic maps in the non-equirank case. 展开更多
关键词 Proper holomorphic maps Bounded symmetric domains Characteristic symmetric subspaces Invariantly geodesic subspaces Rank defects
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部