In this paper, by applying Lyapunov functional approach, we establish a sufficient condition on the global stability of a "delayed" multi-group SIRS epidemic model with cure rate and incomplete recovery rate which d...In this paper, by applying Lyapunov functional approach, we establish a sufficient condition on the global stability of a "delayed" multi-group SIRS epidemic model with cure rate and incomplete recovery rate which does not depend on the delays and is an extension of the "light drug model" studied in the recent paper [Muroya, Li and Kuniya, Complete global analysis of an SIRS epidemic model with graded cure rate and incomplete recovery rate, J. Math. Anal. Appl. 410 (2014) 719-732] to a multi-group model. Applying a Lyapunov functional on total population of each compartment, we offer new techniques for the delayed system, how to prove the permanence, the existence of the endemic equilibrium and the global stability of disease-free equilibrium for the reproduction number R0 ≤ 1 and endemic equilibrium forR0 ≥ 1.展开更多
文摘In this paper, by applying Lyapunov functional approach, we establish a sufficient condition on the global stability of a "delayed" multi-group SIRS epidemic model with cure rate and incomplete recovery rate which does not depend on the delays and is an extension of the "light drug model" studied in the recent paper [Muroya, Li and Kuniya, Complete global analysis of an SIRS epidemic model with graded cure rate and incomplete recovery rate, J. Math. Anal. Appl. 410 (2014) 719-732] to a multi-group model. Applying a Lyapunov functional on total population of each compartment, we offer new techniques for the delayed system, how to prove the permanence, the existence of the endemic equilibrium and the global stability of disease-free equilibrium for the reproduction number R0 ≤ 1 and endemic equilibrium forR0 ≥ 1.