Accurate and fast performance estimation is necessary to drive design space exploration and thus support important design decisions. Current techniques are either time consuming or not accurate enough. In this paper, ...Accurate and fast performance estimation is necessary to drive design space exploration and thus support important design decisions. Current techniques are either time consuming or not accurate enough. In this paper, we solve these problems by presenting a hybrid method for multimedia multiprocessor system-on-chip (MPSoC) performance estimation. A general coverage analysis tool GNU gcov is employed to profile the execution statistics during the native simulation. To tackle the complexity and keep the analysis and simulation manageable, the orthogonalization of communication and computation parts is adopted. The estimation result of the computation part is annotated to a transaction accurate model for further analysis, by which a gradual refinement of MPSoC performance estimation is supported. The implementation and its experimental results prove the feasibility and efficiency of the proposed method.展开更多
基金Project-supported-- by the National Natural Science Foundation of China (No. 61100074), the National Science and Technol- ogy Major Project of China (No. 2012ZX01039-004), and the Fundamental Research Funds for the Central Universities, China
文摘Accurate and fast performance estimation is necessary to drive design space exploration and thus support important design decisions. Current techniques are either time consuming or not accurate enough. In this paper, we solve these problems by presenting a hybrid method for multimedia multiprocessor system-on-chip (MPSoC) performance estimation. A general coverage analysis tool GNU gcov is employed to profile the execution statistics during the native simulation. To tackle the complexity and keep the analysis and simulation manageable, the orthogonalization of communication and computation parts is adopted. The estimation result of the computation part is annotated to a transaction accurate model for further analysis, by which a gradual refinement of MPSoC performance estimation is supported. The implementation and its experimental results prove the feasibility and efficiency of the proposed method.