Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing ...Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.展开更多
Three kinds of welds were made using low frequency pulse current variable polarity tungsten inter gas (LPVPTIG) with argon shielding, direct current TIG (DCTIG) with helium shielding and high frequency pulse curr...Three kinds of welds were made using low frequency pulse current variable polarity tungsten inter gas (LPVPTIG) with argon shielding, direct current TIG (DCTIG) with helium shielding and high frequency pulse current variable polarity TIG (HPVPTIG) with argon shielding, respectively. It was found that macrosegregation bands with large amount of thick continuous eutectics and microporosities formed in the LPVPTIG weld due to the fluctuation of the pulse varied heat input. Only microsegregation existed in the DCTIG weld and HPVPTIG weld. However,the HPVPTIG weld had lower extent of Cu microsegregation since its welding speed was slower. The tensile results indicated that the mechanical properties of the weld decreased with the increase of the segregation extent of Cu and porosities, and LPVPTIG weld had lower tensile properties in the longitudinal direction than those in the transverse direction due to the macrosegregation bands.展开更多
Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of noneq...Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of nonequilibrium statistical physical concepts and methods. The microcrack evolution equation is the central equation in the theory.The coefficents of the equation, the microcrack growth rate and the microcrack nucleation rate,come from microscopic atomic mechanism.The solution of the equation connects with macromechanical quantities by the model of the weakest chain. All the other formulas and quantities, for instance, distribution function,fracture probability, reliability, failure rate and macromechanical quantities such as strength, toughness, life etc. and their statistical distribution function and statistical fluctuation are derived in a unified fashion and expressed by a few physical parameters. This theory can be widely applied to various kinds of fracture, such as the brittle, fatigue, delayed and environmental fracture of metals and structural ceramics. The theoretical framework of this theory is given in this paper.展开更多
From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the A...From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the AUTOCAD model into 3DEC (3-dimensional distinct element code) model was developed, and a numerical model was established in 3DEC. Moreover, the results of triaxial compression tests of columnar jointed rock masses were simulated numerically. The REV (representative element volume) scale was studied, and the result shows that the REV size is 3 m × 3 m. The proposed approach, the established model and the numerical simulation were applied to study the macro-mechanical properties and the equivalent strength parameters of the columnar jointed rock mass. The numerical simulation results are in good accordance with the in-situ test results.展开更多
Under the effect of chemical etching,the macroscopic mechanical properties,mesoscopic structure,mineral content,and porosity of rocks undergo significant changes,which can lead to the geological disasters; thus,an und...Under the effect of chemical etching,the macroscopic mechanical properties,mesoscopic structure,mineral content,and porosity of rocks undergo significant changes,which can lead to the geological disasters; thus,an understanding of changes in the microscopic and macroscopic structure of rocks after chemical etching is crucial.In this study,uniaxial mechanical tests and nuclear magnetic resonance(NMR) spectroscopy were carried out on sandstone samples that had been previously subjected to chemical erosion under different p H values.The aim was to study changes in properties and mechanical characteristics,including deformation and strength characteristics,of the rock,and microscopic pore variation characteristics,and to perform preliminary studies of the chemical corrosion mechanism.Results show that different chemical solutions have a significant influence on the uniaxial compressive strength,the axial strain corresponding to the peak axial stress,elastic modulus,etc.With the passage of time,porosity increases gradually with exposure to different chemical solutions,and exposure to chemical solutions results in large changes in the NMR T2 curve and T2 spectrum area.Sandstone exposed to different chemical solutions exhibits different corrosion mechanisms; the root cause is the change of mineral.展开更多
Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking con...Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking concrete for instances, the rationality and the flexibility of this model and its parameters-determining method were identified by the comparative analyses between theoretical and experimental curves. The results show that the model can simulate the whole damage and fracture process in the fracture process zone of material when the materials arc exposed to quasi-static uniaxial tensile traction. The influence of the mesoscopic damage mechanism on the macroscopic mechanical properties of quasi-brittle materials is summarized into two aspects, rupture damage and yield damage. The whole damage course is divided into the statistical even damage phase and the local breach phase, corresponding to the two stages described by the catastrophe theory. The two characteristic states, the peak nominal stress state and the critical state are distinguished, and the critical state plays a key role during the whole damage evolution course.展开更多
基金Project(52225403)supported by the National Natural Science Foundation of ChinaProject(2023YFF0615401)supported by the National Key Research and Development Program of China+1 种基金Projects(2023NSFSC0004,2023NSFSC0790)supported by Science and Technology Program of Sichuan Province,ChinaProject(2021-CMCUKFZD001)supported by the Open Fund of State Key Laboratory of Coal Mining and Clean Utilization,China。
文摘Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.
文摘Three kinds of welds were made using low frequency pulse current variable polarity tungsten inter gas (LPVPTIG) with argon shielding, direct current TIG (DCTIG) with helium shielding and high frequency pulse current variable polarity TIG (HPVPTIG) with argon shielding, respectively. It was found that macrosegregation bands with large amount of thick continuous eutectics and microporosities formed in the LPVPTIG weld due to the fluctuation of the pulse varied heat input. Only microsegregation existed in the DCTIG weld and HPVPTIG weld. However,the HPVPTIG weld had lower extent of Cu microsegregation since its welding speed was slower. The tensile results indicated that the mechanical properties of the weld decreased with the increase of the segregation extent of Cu and porosities, and LPVPTIG weld had lower tensile properties in the longitudinal direction than those in the transverse direction due to the macrosegregation bands.
文摘Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of nonequilibrium statistical physical concepts and methods. The microcrack evolution equation is the central equation in the theory.The coefficents of the equation, the microcrack growth rate and the microcrack nucleation rate,come from microscopic atomic mechanism.The solution of the equation connects with macromechanical quantities by the model of the weakest chain. All the other formulas and quantities, for instance, distribution function,fracture probability, reliability, failure rate and macromechanical quantities such as strength, toughness, life etc. and their statistical distribution function and statistical fluctuation are derived in a unified fashion and expressed by a few physical parameters. This theory can be widely applied to various kinds of fracture, such as the brittle, fatigue, delayed and environmental fracture of metals and structural ceramics. The theoretical framework of this theory is given in this paper.
基金Projects(50911130366, 50979030) supported by the National Natural Science Foundation of China
文摘From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the AUTOCAD model into 3DEC (3-dimensional distinct element code) model was developed, and a numerical model was established in 3DEC. Moreover, the results of triaxial compression tests of columnar jointed rock masses were simulated numerically. The REV (representative element volume) scale was studied, and the result shows that the REV size is 3 m × 3 m. The proposed approach, the established model and the numerical simulation were applied to study the macro-mechanical properties and the equivalent strength parameters of the columnar jointed rock mass. The numerical simulation results are in good accordance with the in-situ test results.
基金supported by the National Basic Research Program of China (973 Program) (Grant No.2011CB013503)the National Natural Science Foundation of China (Grant No.51374112,51679093)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQNPY112,ZQN-PY311)
文摘Under the effect of chemical etching,the macroscopic mechanical properties,mesoscopic structure,mineral content,and porosity of rocks undergo significant changes,which can lead to the geological disasters; thus,an understanding of changes in the microscopic and macroscopic structure of rocks after chemical etching is crucial.In this study,uniaxial mechanical tests and nuclear magnetic resonance(NMR) spectroscopy were carried out on sandstone samples that had been previously subjected to chemical erosion under different p H values.The aim was to study changes in properties and mechanical characteristics,including deformation and strength characteristics,of the rock,and microscopic pore variation characteristics,and to perform preliminary studies of the chemical corrosion mechanism.Results show that different chemical solutions have a significant influence on the uniaxial compressive strength,the axial strain corresponding to the peak axial stress,elastic modulus,etc.With the passage of time,porosity increases gradually with exposure to different chemical solutions,and exposure to chemical solutions results in large changes in the NMR T2 curve and T2 spectrum area.Sandstone exposed to different chemical solutions exhibits different corrosion mechanisms; the root cause is the change of mineral.
基金Projects(90510018, 50679006) supported by the National Natural Science Foundation of ChinaProject(NCET-05-0413) support by the Program for New Century Excellent Talents in University
文摘Based on the parallel bar system, combining with the synergetic method, the catastrophe theory and the acoustic emission test, a new motivated statistical damage model for quasi-brittle solid was developed. Taking concrete for instances, the rationality and the flexibility of this model and its parameters-determining method were identified by the comparative analyses between theoretical and experimental curves. The results show that the model can simulate the whole damage and fracture process in the fracture process zone of material when the materials arc exposed to quasi-static uniaxial tensile traction. The influence of the mesoscopic damage mechanism on the macroscopic mechanical properties of quasi-brittle materials is summarized into two aspects, rupture damage and yield damage. The whole damage course is divided into the statistical even damage phase and the local breach phase, corresponding to the two stages described by the catastrophe theory. The two characteristic states, the peak nominal stress state and the critical state are distinguished, and the critical state plays a key role during the whole damage evolution course.