The ground state properties of superheavy nuclei are systematically calculated by the macroscopic-microscopic (MM) model with the Nilsson potential.The calculations well produced the ground state binding energies,α-d...The ground state properties of superheavy nuclei are systematically calculated by the macroscopic-microscopic (MM) model with the Nilsson potential.The calculations well produced the ground state binding energies,α-decay energies,and half lives of superheavy nuclei.The calculated results are systematically compared with availableexperimental data.The calculated results are also compared with theoretical results from other MM models and fromrelativistic mean-field model.The calculations and comparisons show that the MM model is reliable in superheavy regionand that the MM model results are not very sensitive to the choice of microscopic single-particle potential.展开更多
We study the level structures of N = 7 - 9 isotones and their mirror nuclei in the framework of the single-particle potential model. Considering the limitation of the conventional potential-model calculation, the isos...We study the level structures of N = 7 - 9 isotones and their mirror nuclei in the framework of the single-particle potential model. Considering the limitation of the conventional potential-model calculation, the isospindependent 12 coupling is newly introduced in the average potential. The modified model gives a unified description for the structures of all studied nuclei. Galculations self-consistently produce the s-d level inversion in N = 9 isotones and their mirror nuclei. Meanwhile, the s-p level inversion in the mirror nuclei ^11Be and ^11N is reproduced. The study confirms the neutron halo structures in ^11Be(2s1/2), ^11Be(1p1/2), ^12B(2s1/2), ^14B(2s1/2), ^13C(2sl/2), ^15C(2s1/2) and the proton halo structure in ^17F(2s1/2). The agreement between theory and experiment indicates that the inclusion of the i2 coupling is a feasible way to explain the abnormal structures of exotic light nuclei.展开更多
Nonlinear spring characteristics of the tense torsion bar in the gap-closing type electrostatic micromirror are examined. The macro model is introduced for the experimental study. The tension applied in the torsion ba...Nonlinear spring characteristics of the tense torsion bar in the gap-closing type electrostatic micromirror are examined. The macro model is introduced for the experimental study. The tension applied in the torsion bar is well controlled using the electromagnetic attraction. This controllability is suited for clearing the nonlinear nature. The tension is confirmed to have the effect to widen the controllable angle range of the mirror suppressing the pull-in. The pull-in angle is observed to increases to about 74% of the mechanical limit angle at the tension of 0,96 N. This is significantly larger than 44% of the case with the linear spring. The larger resonant frequency is maintained. The hardening of the spring can keep the balance with the electrostatic force over the limit of the linear spring. The observed features are explained reasonably with the combination of twisting and bending displacements of the torsion bar.展开更多
Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stre...Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stress distribution of the composite structure is calculated by commercial finite element software. According to the macro-stress, the damaged point is found and the micro-stress distribution of representative volume element is calculated by finite-volume direct averaging micromechanics(FVDAM). Compared with the results calculated by failure criterion based on macro-stress field(the maximum stress criteria and Hashin criteria) and micro-stress field(Huang model), it is proven that the failure analysis based on macro- and micro-mechanics model is feasible and efficient.展开更多
基金National Natural Science Foundation of China under Grant Nos.10125521 and 10535010the State Key Basic Research and Development Program of China under Grant Nos.G2000077400 and 2007CB815004+1 种基金the CAS Knowledge Innovation Project under Grant No.KJCX2-SW-N02the Fund of the Education Ministry of China under Grant No.20010284036
文摘The ground state properties of superheavy nuclei are systematically calculated by the macroscopic-microscopic (MM) model with the Nilsson potential.The calculations well produced the ground state binding energies,α-decay energies,and half lives of superheavy nuclei.The calculated results are systematically compared with availableexperimental data.The calculated results are also compared with theoretical results from other MM models and fromrelativistic mean-field model.The calculations and comparisons show that the MM model is reliable in superheavy regionand that the MM model results are not very sensitive to the choice of microscopic single-particle potential.
基金National Natural Science Foundation of China under Grant Nos.10535010 and 10775068the State Key Basic Research Program under Grant No.2007CB815004+1 种基金the CAS Knowledge Innovation Project under Grant No.KJCX2-SW-N02the Research Fund of High Education under Grant No.20010284036
文摘We study the level structures of N = 7 - 9 isotones and their mirror nuclei in the framework of the single-particle potential model. Considering the limitation of the conventional potential-model calculation, the isospindependent 12 coupling is newly introduced in the average potential. The modified model gives a unified description for the structures of all studied nuclei. Galculations self-consistently produce the s-d level inversion in N = 9 isotones and their mirror nuclei. Meanwhile, the s-p level inversion in the mirror nuclei ^11Be and ^11N is reproduced. The study confirms the neutron halo structures in ^11Be(2s1/2), ^11Be(1p1/2), ^12B(2s1/2), ^14B(2s1/2), ^13C(2sl/2), ^15C(2s1/2) and the proton halo structure in ^17F(2s1/2). The agreement between theory and experiment indicates that the inclusion of the i2 coupling is a feasible way to explain the abnormal structures of exotic light nuclei.
文摘Nonlinear spring characteristics of the tense torsion bar in the gap-closing type electrostatic micromirror are examined. The macro model is introduced for the experimental study. The tension applied in the torsion bar is well controlled using the electromagnetic attraction. This controllability is suited for clearing the nonlinear nature. The tension is confirmed to have the effect to widen the controllable angle range of the mirror suppressing the pull-in. The pull-in angle is observed to increases to about 74% of the mechanical limit angle at the tension of 0,96 N. This is significantly larger than 44% of the case with the linear spring. The larger resonant frequency is maintained. The hardening of the spring can keep the balance with the electrostatic force over the limit of the linear spring. The observed features are explained reasonably with the combination of twisting and bending displacements of the torsion bar.
基金Project(51075204)supported by the National Natural Science Foundation of ChinaProjects(2012ZB52026,2014ZB52024)supported by the Aeronautical Science Foundation of ChinaProject(NS2014024)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on parameter design language, a program of progressive failure analysis in composite structures is proposed. In this program, the relationship between macro- and micro-mechanics is established and the macro stress distribution of the composite structure is calculated by commercial finite element software. According to the macro-stress, the damaged point is found and the micro-stress distribution of representative volume element is calculated by finite-volume direct averaging micromechanics(FVDAM). Compared with the results calculated by failure criterion based on macro-stress field(the maximum stress criteria and Hashin criteria) and micro-stress field(Huang model), it is proven that the failure analysis based on macro- and micro-mechanics model is feasible and efficient.