The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with ...The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with improved catalytic performance.Herein,various O‐functional MXenes were investigated as NRR catalysts by a combination of density functional theory calculations and least absolute shrinkage and selection operator(LASSO)regression.Nb_(3)C_(2)O_(X) has been regarded as a promising catalyst for the NRR because of its stability,activity,and selectivity.The poten‐tial‐determining step is*NH_(2) hydrogenation to*NH3 with a limiting potential of-0.45 V.Further‐more,via LASSO regression,the descriptors and equations fitting the relationship between the properties of O‐functional MXenes and NRR activity have been proposed.This work not only pro‐vides a rational design strategy for catalysts but also provides machine learning data for further investigation.展开更多
Phosphinoylazidation of alkenes is a direct method to build nitrogen-and phosphorus-containing compounds from feed-stock chemicals.Notwithstanding the advances in other phosphinyl radical related difunctionalization o...Phosphinoylazidation of alkenes is a direct method to build nitrogen-and phosphorus-containing compounds from feed-stock chemicals.Notwithstanding the advances in other phosphinyl radical related difunctionalization of alkenes,catalytic phosphinoylazidation of alkenes has not yet been reported.Here,we describe the first iron-catalyzed intermolecular phosphinoylazidation of styrenes and unactivated alkenes.The method is practically useful and requires a relatively low loading of catalyst.Mechanistic studies confirmed the radical nature of the reaction and disclosed the unusually low activation energy 4.8 kcal/mol of radical azido group transfer from the azidyl iron(III)phthalocyanine species(PcFeulN3)to a benzylic radical.This work may help to clarify the mechanism of iron-catalyzed azidation,inspire other mechanism studies and spur further synthetic applications.展开更多
文摘The nitrogen reduction reaction(NRR)using new and efficient electrocatalysts is a promising al‐ternative to the traditional Haber‐Bosch process.Nevertheless,it remains a challenge to design efficient catalysts with improved catalytic performance.Herein,various O‐functional MXenes were investigated as NRR catalysts by a combination of density functional theory calculations and least absolute shrinkage and selection operator(LASSO)regression.Nb_(3)C_(2)O_(X) has been regarded as a promising catalyst for the NRR because of its stability,activity,and selectivity.The poten‐tial‐determining step is*NH_(2) hydrogenation to*NH3 with a limiting potential of-0.45 V.Further‐more,via LASSO regression,the descriptors and equations fitting the relationship between the properties of O‐functional MXenes and NRR activity have been proposed.This work not only pro‐vides a rational design strategy for catalysts but also provides machine learning data for further investigation.
文摘Phosphinoylazidation of alkenes is a direct method to build nitrogen-and phosphorus-containing compounds from feed-stock chemicals.Notwithstanding the advances in other phosphinyl radical related difunctionalization of alkenes,catalytic phosphinoylazidation of alkenes has not yet been reported.Here,we describe the first iron-catalyzed intermolecular phosphinoylazidation of styrenes and unactivated alkenes.The method is practically useful and requires a relatively low loading of catalyst.Mechanistic studies confirmed the radical nature of the reaction and disclosed the unusually low activation energy 4.8 kcal/mol of radical azido group transfer from the azidyl iron(III)phthalocyanine species(PcFeulN3)to a benzylic radical.This work may help to clarify the mechanism of iron-catalyzed azidation,inspire other mechanism studies and spur further synthetic applications.