We study the local Gromov-Witten invariants of O(k)⊕O(-k-2) → P1 by localization techniques and the Marino-Vafa formula, using suitable circle actions. They are identified with the equivariant Riemann-Roch indic...We study the local Gromov-Witten invariants of O(k)⊕O(-k-2) → P1 by localization techniques and the Marino-Vafa formula, using suitable circle actions. They are identified with the equivariant Riemann-Roch indices of some power of the determinant of the tautological sheaves on the Hilbert schemes of points on the affine plane. We also compute the corresponding Gopakumar-Vafa invariants and make some conjectures about them.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.10425101,10631050)National Basic Research Program of China (973 Project) (Grant No. 2006cB805905)
文摘We study the local Gromov-Witten invariants of O(k)⊕O(-k-2) → P1 by localization techniques and the Marino-Vafa formula, using suitable circle actions. They are identified with the equivariant Riemann-Roch indices of some power of the determinant of the tautological sheaves on the Hilbert schemes of points on the affine plane. We also compute the corresponding Gopakumar-Vafa invariants and make some conjectures about them.