光伏最大功率点跟踪是提高光伏发电效率的重要手段。在局部阴影条件下,光伏阵列的特性曲线呈现多峰形状,常规的传统算法容易陷入局部最优。如何在局部阴影条件下找到全局最大功率点(global maximum power point,GMPP)至关重要。提出了...光伏最大功率点跟踪是提高光伏发电效率的重要手段。在局部阴影条件下,光伏阵列的特性曲线呈现多峰形状,常规的传统算法容易陷入局部最优。如何在局部阴影条件下找到全局最大功率点(global maximum power point,GMPP)至关重要。提出了一种定位收缩法(locate and shrink algorithm,LSA),采用收缩边界的思想使得边界逐渐收缩到GMPP。LSA第一阶段提出了一种峰的定位方法,通过自适应采样结合I-V特性曲线能够定位主要峰的占空比范围。定位法能够与其他单峰算法结合,具有较强的扩展性。第二阶段提出了一种基于三点准则的收缩法,能够在单峰范围内通过收缩边界快速找到峰值点,并且具有很强的环境适应性。将LSA与多个算法进行仿真和硬件实验对比,结果表明LSA在跟踪速度、跟踪精度和稳态振荡方面有着明显优势。展开更多
文摘光伏最大功率点跟踪是提高光伏发电效率的重要手段。在局部阴影条件下,光伏阵列的特性曲线呈现多峰形状,常规的传统算法容易陷入局部最优。如何在局部阴影条件下找到全局最大功率点(global maximum power point,GMPP)至关重要。提出了一种定位收缩法(locate and shrink algorithm,LSA),采用收缩边界的思想使得边界逐渐收缩到GMPP。LSA第一阶段提出了一种峰的定位方法,通过自适应采样结合I-V特性曲线能够定位主要峰的占空比范围。定位法能够与其他单峰算法结合,具有较强的扩展性。第二阶段提出了一种基于三点准则的收缩法,能够在单峰范围内通过收缩边界快速找到峰值点,并且具有很强的环境适应性。将LSA与多个算法进行仿真和硬件实验对比,结果表明LSA在跟踪速度、跟踪精度和稳态振荡方面有着明显优势。