Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location ...Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.展开更多
Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequen...Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.展开更多
文摘Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.
基金Project(2009BADB9B09)supported by the National Key Technologies R&D Program of China
文摘Warehouse operation has become a critical activity in supply chain. Position information of pallets is important in warehouse management which can enhance the efficiency of pallets picking and sortation. Radio frequency identification(RFID) has been widely used in warehouse for item identifying. Meanwhile, RFID technology also has great potential for pallets localization which is underutilized in warehouse management. RFID-based checking-in and inventory systems have been applied in warehouse management by many enterprises. Localization approach is studied, which is compatible with existing RFID checking-in and inventory systems. A novel RFID localization approach is proposed for pallets checking-in. Phase variation of nearby tags was utilized to estimate the position of added pallets. A novel inventory localization approach combing angle of arrival(AOA) measurement and received signal strength(RSS) is also proposed for pallets inventory. Experiments were carried out using standard UHF passive RFID system. Experimental results show an acceptable localization accuracy which can satisfy the requirement of warehouse management.