Forkhead box (Fox) proteins play critical roles in the regulation of differentiation, proliferation, immunity and aging of cells. Most studies on Fox proteins are limited to cultured cells and rodent. The aim of the...Forkhead box (Fox) proteins play critical roles in the regulation of differentiation, proliferation, immunity and aging of cells. Most studies on Fox proteins are limited to cultured cells and rodent. The aim of the current study is to detect by immunohistrochemistry whether FoxO1, FoxO3a and FoxO4 proteins are localized in the stomach and intestine of the pig. The results showed that FoxO4 exists in the mucosa in all parts of the stomach and intestine; FoxO3a exists mainly in the lamina propria and muscularis of some parts. However, FoxOl is not detectable in all parts of the stomach and intestine. Collectively, the results of the present study indicate that there exists a distinct expression pattern of Fox proteins, and that FoxO4 is a primary forkhead transcriptional factor localized in the gastrointestinal tracts of the pig.展开更多
Objective To investigate whether α-hemoglobin stabilizing protein (AHSP), the α-globin-specific molecular chaperone, is regulated by erythroid transcription factor NF-E2. Methods We established the stable cell line ...Objective To investigate whether α-hemoglobin stabilizing protein (AHSP), the α-globin-specific molecular chaperone, is regulated by erythroid transcription factor NF-E2. Methods We established the stable cell line with NF-E2p45 (the larger subunit of NF-E2) short hairpin RNA to silence its expression. Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation (ChIP) analysis were performed to detect the expression of AHSP, the histone modifications at AHSP gene locus, and the binding of GATA-1 at the AHSP promoter with NF-E2p45 deficiency. ChIP was also carried out in dimethyl sulfoxide (DMSO)-induced DS19 cells and estrogen-induced G1E-ER4 cells to examine NF-E2 binding to the AHSP gene locus and its changes during cell erythroid differentiation. Finally, luciferase assay was applied in HeLa cells transfected with AHSP promoter fragments to examine AHSP promoter activity in the presence of exogenous NF-E2p45. Results We found that AHSP expression was highly dependent on NF-E2p45. NF-E2 bound to the regions across AHSP gene locus in vivo, and the transcription of AHSP was transactivated by exogenous NF-E2p45. In addition, we observed the decrease of H3K4 trimethylation and GATA-1 occupancy at the AHSP gene locus in NF-E2p45-deficient cells. Restoration of GATA-1 in G1E-ER4 cells in turn led to increased DNA binding of NF-E2p45. Conclusion NF-E2 may play an important role in AHSP gene regulation, providing new insights into the molecular mechanisms underlying the erythroid-specific expression of AHSP as well as new possibilities for β-thalassemia treatment.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB117500) and the National Natural Science Foun-dation of China (Nos. 30571335 and 330471253)
文摘Forkhead box (Fox) proteins play critical roles in the regulation of differentiation, proliferation, immunity and aging of cells. Most studies on Fox proteins are limited to cultured cells and rodent. The aim of the current study is to detect by immunohistrochemistry whether FoxO1, FoxO3a and FoxO4 proteins are localized in the stomach and intestine of the pig. The results showed that FoxO4 exists in the mucosa in all parts of the stomach and intestine; FoxO3a exists mainly in the lamina propria and muscularis of some parts. However, FoxOl is not detectable in all parts of the stomach and intestine. Collectively, the results of the present study indicate that there exists a distinct expression pattern of Fox proteins, and that FoxO4 is a primary forkhead transcriptional factor localized in the gastrointestinal tracts of the pig.
基金Supported by National Natural Science Foundation of China (30130026, U0632005, 30721063)National Basic Research Program of China (973 Program) (2011CB964803)+1 种基金National Laboratory of Medical Molecular Biology grant (2060204)Beijing municipal government grant (YB20081002301)
文摘Objective To investigate whether α-hemoglobin stabilizing protein (AHSP), the α-globin-specific molecular chaperone, is regulated by erythroid transcription factor NF-E2. Methods We established the stable cell line with NF-E2p45 (the larger subunit of NF-E2) short hairpin RNA to silence its expression. Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation (ChIP) analysis were performed to detect the expression of AHSP, the histone modifications at AHSP gene locus, and the binding of GATA-1 at the AHSP promoter with NF-E2p45 deficiency. ChIP was also carried out in dimethyl sulfoxide (DMSO)-induced DS19 cells and estrogen-induced G1E-ER4 cells to examine NF-E2 binding to the AHSP gene locus and its changes during cell erythroid differentiation. Finally, luciferase assay was applied in HeLa cells transfected with AHSP promoter fragments to examine AHSP promoter activity in the presence of exogenous NF-E2p45. Results We found that AHSP expression was highly dependent on NF-E2p45. NF-E2 bound to the regions across AHSP gene locus in vivo, and the transcription of AHSP was transactivated by exogenous NF-E2p45. In addition, we observed the decrease of H3K4 trimethylation and GATA-1 occupancy at the AHSP gene locus in NF-E2p45-deficient cells. Restoration of GATA-1 in G1E-ER4 cells in turn led to increased DNA binding of NF-E2p45. Conclusion NF-E2 may play an important role in AHSP gene regulation, providing new insights into the molecular mechanisms underlying the erythroid-specific expression of AHSP as well as new possibilities for β-thalassemia treatment.