继电保护在线定值比对需要将整定定值和运行定值对应的定值名称进行匹配,针对此过程中存在的匹配效率不高、准确度差等问题,提出一种基于混合专业词典的防误比对方法以实现智能化匹配。该方法首先改进整词二分词典结构,增加同义词标志...继电保护在线定值比对需要将整定定值和运行定值对应的定值名称进行匹配,针对此过程中存在的匹配效率不高、准确度差等问题,提出一种基于混合专业词典的防误比对方法以实现智能化匹配。该方法首先改进整词二分词典结构,增加同义词标志项和复合型字符标志项,同时将中文、英文和序号类字符均纳入字典,采用改进的正向最大匹配算法(forward maximum matching,FMM)提高分词准确度;其次,提出类型和首项的双重过滤机制以减小目标搜索空间的大小;然后针对继电保护定值名称的特殊性,采用不计词序的Jaccard相似度替代编辑距离计算的相似度,提高匹配准确度;最后通过定值项取值比较结果的反馈进行二次匹配,进一步提高匹配的准确度。算例分析验证所提方法能够有效提高比对的效率和精度。展开更多
We are concerned with the maximization of tr(V T AV)/tr(V T BV)+tr(V T CV) over the Stiefel manifold {V ∈ R m×l | V T V = Il} (l 〈 m), where B is a given symmetric and positive definite matrix, A and...We are concerned with the maximization of tr(V T AV)/tr(V T BV)+tr(V T CV) over the Stiefel manifold {V ∈ R m×l | V T V = Il} (l 〈 m), where B is a given symmetric and positive definite matrix, A and C are symmetric matrices, and tr(. ) is the trace of a square matrix. This is a subspace version of the maximization problem studied in Zhang (2013), which arises from real-world applications in, for example, the downlink of a multi-user MIMO system and the sparse Fisher discriminant analysis in pattern recognition. We establish necessary conditions for both the local and global maximizers and connect the problem with a nonlinear extreme eigenvalue problem. The necessary condition for the global maximizers offers deep insights into the problem, on the one hand, and, on the other hand, naturally leads to a self-consistent-field (SCF) iteration to be presented and analyzed in detail in Part II of this paper.展开更多
文摘继电保护在线定值比对需要将整定定值和运行定值对应的定值名称进行匹配,针对此过程中存在的匹配效率不高、准确度差等问题,提出一种基于混合专业词典的防误比对方法以实现智能化匹配。该方法首先改进整词二分词典结构,增加同义词标志项和复合型字符标志项,同时将中文、英文和序号类字符均纳入字典,采用改进的正向最大匹配算法(forward maximum matching,FMM)提高分词准确度;其次,提出类型和首项的双重过滤机制以减小目标搜索空间的大小;然后针对继电保护定值名称的特殊性,采用不计词序的Jaccard相似度替代编辑距离计算的相似度,提高匹配准确度;最后通过定值项取值比较结果的反馈进行二次匹配,进一步提高匹配的准确度。算例分析验证所提方法能够有效提高比对的效率和精度。
基金supported by National Natural Science Foundation of China(Grant Nos.11101257 and 11371102)the Basic Academic Discipline Program+3 种基金the 11th Five Year Plan of 211 Project for Shanghai University of Finance and Economicsa visiting scholar at the Department of Mathematics,University of Texas at Arlington from February 2013 toJanuary 2014supported by National Science Foundation of USA(Grant Nos.1115834and 1317330)a Research Gift Grant from Intel Corporation
文摘We are concerned with the maximization of tr(V T AV)/tr(V T BV)+tr(V T CV) over the Stiefel manifold {V ∈ R m×l | V T V = Il} (l 〈 m), where B is a given symmetric and positive definite matrix, A and C are symmetric matrices, and tr(. ) is the trace of a square matrix. This is a subspace version of the maximization problem studied in Zhang (2013), which arises from real-world applications in, for example, the downlink of a multi-user MIMO system and the sparse Fisher discriminant analysis in pattern recognition. We establish necessary conditions for both the local and global maximizers and connect the problem with a nonlinear extreme eigenvalue problem. The necessary condition for the global maximizers offers deep insights into the problem, on the one hand, and, on the other hand, naturally leads to a self-consistent-field (SCF) iteration to be presented and analyzed in detail in Part II of this paper.