A robust sliding mode control algorithm is developed for a class of networked control system with packet dropouts in both sensor-controller channel and controller-actuator channel,and at the same time mismatched param...A robust sliding mode control algorithm is developed for a class of networked control system with packet dropouts in both sensor-controller channel and controller-actuator channel,and at the same time mismatched parametric uncertainty and external disturbance are also taken into consideration.A two-level Bernoulli process has been used to describe the packet dropouts existing in both channels.A novel integral sliding surface is proposed,based on which the H∞performance of system sliding mode motion is analyzed.Then the sufficient condition for system stability and robustness is derived in the form of linear matrix inequality(LMI).A sliding mode controller is designed which can guarantee a relatively ideal system dynamic performance and has certain robustness against unknown parameter perturbations and external disturbances.The results from numerical simulations are presented to corroborate the validity of the proposed controller.展开更多
Feedforward symbol timing recovery techniques are particularly important for initial acquisition in burst modems. However, these techniques either have large calculation burden or sensitive to frequency offsets. In th...Feedforward symbol timing recovery techniques are particularly important for initial acquisition in burst modems. However, these techniques either have large calculation burden or sensitive to frequency offsets. In this paper, we proposed an efficient symbol timing recovery algorithm of MPSK signals named OMQ(Ordered Maximum power using Quadratic approximation partially) algorithm which is based on the Quadratic Approximation(QA) algorithm. We used ordered statistic sorting method to reduce the computational complexity further, meanwhile maximum mean power principle was used to decrease frequency offset sensitivity. The proposed algorithm adopts estimation-down sampling structure which is suitable for small packet size transmission. The results show that, while comparing with the QA algorithm, the computational complexity is reduced by 75% at most when 8 samples per symbol are used. The proposed algorithm shows better performance in terms of the jitter variance and sensitivity to frequency offsets.展开更多
基金Projects(51476187,51506221,51606219) supported by the National Natural Science Foundation of China
文摘A robust sliding mode control algorithm is developed for a class of networked control system with packet dropouts in both sensor-controller channel and controller-actuator channel,and at the same time mismatched parametric uncertainty and external disturbance are also taken into consideration.A two-level Bernoulli process has been used to describe the packet dropouts existing in both channels.A novel integral sliding surface is proposed,based on which the H∞performance of system sliding mode motion is analyzed.Then the sufficient condition for system stability and robustness is derived in the form of linear matrix inequality(LMI).A sliding mode controller is designed which can guarantee a relatively ideal system dynamic performance and has certain robustness against unknown parameter perturbations and external disturbances.The results from numerical simulations are presented to corroborate the validity of the proposed controller.
基金supported by the National Natural Science Foundation of China(NSFC.NO.61303253)
文摘Feedforward symbol timing recovery techniques are particularly important for initial acquisition in burst modems. However, these techniques either have large calculation burden or sensitive to frequency offsets. In this paper, we proposed an efficient symbol timing recovery algorithm of MPSK signals named OMQ(Ordered Maximum power using Quadratic approximation partially) algorithm which is based on the Quadratic Approximation(QA) algorithm. We used ordered statistic sorting method to reduce the computational complexity further, meanwhile maximum mean power principle was used to decrease frequency offset sensitivity. The proposed algorithm adopts estimation-down sampling structure which is suitable for small packet size transmission. The results show that, while comparing with the QA algorithm, the computational complexity is reduced by 75% at most when 8 samples per symbol are used. The proposed algorithm shows better performance in terms of the jitter variance and sensitivity to frequency offsets.