Three observation methods were used to investigate the existing form and the behavior of rare earth during the sintering process of high activity mischmetal (RE, with lanthanum and cerium) doped WC-8%Co-0.048%RE(ma...Three observation methods were used to investigate the existing form and the behavior of rare earth during the sintering process of high activity mischmetal (RE, with lanthanum and cerium) doped WC-8%Co-0.048%RE(mass fraction) alloy with low carbon-containing level by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS), considering the fact that the addition amount of rare earth in the alloy is very minute. The directional migration process and mechanism of cerium were discussed. First, the sinter skin (surface) is observed. oxide on the sinter skin, and lanthanum in these cerium observed, and lanthanum containing phase/micro-zone in It is shown that there exists a dispersedly distributed cerium containing enrichment positions is very minute. Secondly, the polished section is the alloy is identified. Finally, based on the fact that the fracture of cemented carbide is resulted from the heterogeneous phase or other defects within the microstructure, the fracture surface is observed and cerium containing phase/micro-zone in the fracture source approximately 260 μm from the surface is identified. These combined observations reveal adequately the fact that lanthanum and cerium get separated and cerium predominantly migrates towards the surface during the sintering process.展开更多
By analyzing high-resolution SPOT images and in combination with fieldwork and chronometry, three typical fault-offset sites on the south-middle Altyn Tagh strike-slip fault were studied to obtain the sinistral horizo...By analyzing high-resolution SPOT images and in combination with fieldwork and chronometry, three typical fault-offset sites on the south-middle Altyn Tagh strike-slip fault were studied to obtain the sinistral horizontal slip rate of the fault. At Annanba, the left-lateral strike-slip rate on a branch of the south Altyn Tagh fault is 7.5±1.7 mm/a since 9.36±0.73ka BP. At Seven Spring, the fault has four branches and the left-lateral strike-slip rate on one of them is 2.3±0.5mm/a since 13.86±1.07ka BP, and it is deduced that the total slip-rate of all the four branches is 6.9±1.5~ 9.2±2.0 mm/a since Holocene. At Yuemakeqi, the left-lateral strike-slip rate of the fault is 10.6±3.0mm/a since 4.73±0.38 ka BP. A slip-rate of 7~11mm/a on the middle segment of the Altyn Tagh fault (between 88°30’E and 93°05’E) since Holocene can be deduced from the three sites mentioned above and the result is similar to the latest GPS observation.展开更多
基金Project(50574104) supported by the National Natural Science Foundation of China
文摘Three observation methods were used to investigate the existing form and the behavior of rare earth during the sintering process of high activity mischmetal (RE, with lanthanum and cerium) doped WC-8%Co-0.048%RE(mass fraction) alloy with low carbon-containing level by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS), considering the fact that the addition amount of rare earth in the alloy is very minute. The directional migration process and mechanism of cerium were discussed. First, the sinter skin (surface) is observed. oxide on the sinter skin, and lanthanum in these cerium observed, and lanthanum containing phase/micro-zone in It is shown that there exists a dispersedly distributed cerium containing enrichment positions is very minute. Secondly, the polished section is the alloy is identified. Finally, based on the fact that the fracture of cemented carbide is resulted from the heterogeneous phase or other defects within the microstructure, the fracture surface is observed and cerium containing phase/micro-zone in the fracture source approximately 260 μm from the surface is identified. These combined observations reveal adequately the fact that lanthanum and cerium get separated and cerium predominantly migrates towards the surface during the sintering process.
文摘By analyzing high-resolution SPOT images and in combination with fieldwork and chronometry, three typical fault-offset sites on the south-middle Altyn Tagh strike-slip fault were studied to obtain the sinistral horizontal slip rate of the fault. At Annanba, the left-lateral strike-slip rate on a branch of the south Altyn Tagh fault is 7.5±1.7 mm/a since 9.36±0.73ka BP. At Seven Spring, the fault has four branches and the left-lateral strike-slip rate on one of them is 2.3±0.5mm/a since 13.86±1.07ka BP, and it is deduced that the total slip-rate of all the four branches is 6.9±1.5~ 9.2±2.0 mm/a since Holocene. At Yuemakeqi, the left-lateral strike-slip rate of the fault is 10.6±3.0mm/a since 4.73±0.38 ka BP. A slip-rate of 7~11mm/a on the middle segment of the Altyn Tagh fault (between 88°30’E and 93°05’E) since Holocene can be deduced from the three sites mentioned above and the result is similar to the latest GPS observation.