Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore di...Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore diameter and microstructure of the porous Mg-Mn alloy were investigated.Mn addition improved the Mn precipitates and increased the porosity and pore diameter.With increasing hydrogen pressure from 0.1 to 0.6 MPa,the overall porosity of the Mg-2wt.%Mn ingot decreased from 55.3%to 38.4%,and the average pore diameter also decreased from 2465 to 312μm.Based on a theoretical model of the change in the porosity with the hydrogen pressure,the calculated results were in good agreement with the experimental results.It is shown that this technique is a promising method to fabricate Gasar Mg–Mn alloys with uniform and controllable pore structure.展开更多
An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural char...An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural characteristics were investigated by means of SEM,XRD and TEM etc.It is observed that the fine column-like dendrites originated from the γ'-particles or γ'-clusters of the DS substrate and are un-continuously coarsened.The β-phase particles precipitate and grow eutectically with the γ-phase.The orientation of fine column dendrites depends on electro-spark deposition processing parameters and the microstructure can be characterized with superfine γ and β phases.展开更多
基金Project(51771101)supported by the National Natural Science Foundation of China。
文摘Lotus-type porous Mg–xMn(x=0,1,2 and 3 wt.%)alloys were fabricated by metal/gas eutectic unidirectional solidification(the Gasar process).The effects of Mn addition and the fabrication process on the porosity,pore diameter and microstructure of the porous Mg-Mn alloy were investigated.Mn addition improved the Mn precipitates and increased the porosity and pore diameter.With increasing hydrogen pressure from 0.1 to 0.6 MPa,the overall porosity of the Mg-2wt.%Mn ingot decreased from 55.3%to 38.4%,and the average pore diameter also decreased from 2465 to 312μm.Based on a theoretical model of the change in the porosity with the hydrogen pressure,the calculated results were in good agreement with the experimental results.It is shown that this technique is a promising method to fabricate Gasar Mg–Mn alloys with uniform and controllable pore structure.
基金Projects(50671116,50901081) supported by the National Natural Science Foundation of China
文摘An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural characteristics were investigated by means of SEM,XRD and TEM etc.It is observed that the fine column-like dendrites originated from the γ'-particles or γ'-clusters of the DS substrate and are un-continuously coarsened.The β-phase particles precipitate and grow eutectically with the γ-phase.The orientation of fine column dendrites depends on electro-spark deposition processing parameters and the microstructure can be characterized with superfine γ and β phases.