After being compressed to different plastic deformation stages, the salt rock samples with lateral stress damage of 0.2, 0.3, 0.4, and 0.5 were selected. Ultrasonic technology was used to monitor the wave velocity var...After being compressed to different plastic deformation stages, the salt rock samples with lateral stress damage of 0.2, 0.3, 0.4, and 0.5 were selected. Ultrasonic technology was used to monitor the wave velocity variation law of stress-dam-aged salt rock during the self-recovery experiment under different temperatures to analyze the influence of initial stress damage and temperature during the self-recovery of salt rock. The experiment shows that the change of salt rock axial wave velocity is smaller than that of lateral wave velocity. The sample ultrasonic velocity is positively correlated with the time of self-recovery, and the damage had been recovered to a certain extent. In the first 200 hours of self-recovery stage, the salt rock lateral damage recovers fast, and then the damage remains almost unchanged. The value of lateral stable damage is positively correlated with the value of lateral initial stress damage. With the increase of temperature, the recovery of lateral damage speeds up and the value of stable damage decreases; the axial damage of salt rock almost remains unchanged during the self-recovery experiment.展开更多
基金Supported by the National Basic Research Program of China (973 Program) (2009CB724606) the Science Foundation for Excellent Youth Scholars of Ministry of Education of China (20090191110001) the National Natural Science Foundation of China (50674108)
文摘After being compressed to different plastic deformation stages, the salt rock samples with lateral stress damage of 0.2, 0.3, 0.4, and 0.5 were selected. Ultrasonic technology was used to monitor the wave velocity variation law of stress-dam-aged salt rock during the self-recovery experiment under different temperatures to analyze the influence of initial stress damage and temperature during the self-recovery of salt rock. The experiment shows that the change of salt rock axial wave velocity is smaller than that of lateral wave velocity. The sample ultrasonic velocity is positively correlated with the time of self-recovery, and the damage had been recovered to a certain extent. In the first 200 hours of self-recovery stage, the salt rock lateral damage recovers fast, and then the damage remains almost unchanged. The value of lateral stable damage is positively correlated with the value of lateral initial stress damage. With the increase of temperature, the recovery of lateral damage speeds up and the value of stable damage decreases; the axial damage of salt rock almost remains unchanged during the self-recovery experiment.