Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe t...We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe thepossible physical mechanisms for rogue wave phenomenon in financial markets and related fields.展开更多
The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone t...The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone to uncertainties such as model parameter variations and disturbances. Robust optimal tracking controller design for this kind of precision stages with mass and damping ratio uncertainties was researched. The mass and damping ratio uncertainties were modeled as the structured parametric uncertainty model. An identification method for obtaining the parametric uncertainties was developed by using unbiased least square technique. The instantaneous frequency bandwidth of the external disturbance signals was analyzed by using short time Fourier transform technique. A two loop tracking control strategy that combines the p-synthesis and the disturbance observer (DOB) techniques was proposed. The p-synthesis technique was used to design robust optimal controllers based on structured uncertainty models. By complementing the/z controller, the DOB was applied to further improving the disturbance rejection performance. To evaluate the positioning performance of the proposed control strategy, the comparative experiments were conducted on a prototype micro milling machine among four control schemes: the proposed two-loop tracking control, the single loop μ control, the PID control and the PID with DOB control. The disturbance rejection performances, the root mean square (RMS) tracking errors and the performance robustness of different control schemes were studied. The results reveal that the proposed control scheme has the best positioning performance. It reduces the maximal errors caused by disturbance forces such as friction force by 60% and the RMS errors by 63.4% compared with the PID control. Compared to PID with DOB control, it reduces the RMS errors by 29.6%.展开更多
In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and positio...In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and position agents accurately and complete the system integration by the keyword matching method,due to the lack of clear semantic information of the classical agent model.An semantic-based agent dynamic positioning mechanism was proposed to assist in the system dynamic integration.According to the semantic agent model and the description method,a two-stage process including the domain positioning stage and the service semantic matching positioning stage,was discussed.With this mechanism,proper agents that provide appropriate service to assign sub-tasks for task completion can be found quickly and accurately.Finally,the effectiveness of the positioning mechanism was validated through the in-depth performance analysis in the application of simulation experiments to the system dynamic integration.展开更多
Investigating the stability of information spreading over SNS helps to understand the principles inherent in the spreading behavior.This paper explores the mechanisms of information spreading including stifling mechan...Investigating the stability of information spreading over SNS helps to understand the principles inherent in the spreading behavior.This paper explores the mechanisms of information spreading including stifling mechanism,latent mechanism and forgetting mechanism,establishes a refined SEIR model,and builds the corresponding mean-field equations.The methods of the differential dynamics and the next generation matrix are used to calculate the equilibriums and the basic reproductive number,and the asymptotical stability of the network equilibriums are proved theoretically.Simulation experiments are carried out to analyze the effect of the spreading mechanisms on the information spreading process and the results support our conclusions.展开更多
By means of the feasibility of some linear matrix inequalities(LMIs),delay dependent sufficient condition is derived for the existence of a linear sliding surface,which guarantees quadratic stability of the reduced-or...By means of the feasibility of some linear matrix inequalities(LMIs),delay dependent sufficient condition is derived for the existence of a linear sliding surface,which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface.And a reaching motion controller is proposed.A numerical simulation shows the effectiveness of the approach.展开更多
The purpose of this work is to investigate the asymptotic properties of a stochastic Gilpin--Ayala population system under regime switching on patches. We establish the global stability and the extinction of the trivi...The purpose of this work is to investigate the asymptotic properties of a stochastic Gilpin--Ayala population system under regime switching on patches. We establish the global stability and the extinction of the trivial equilibrium state of the model. Further- more, we show the existence of the stationary distribution for our system model. The analytical results are illustrated by computer simulations.展开更多
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金Supported by National Natural Science Foundation of China under Grant No.60821002/F02
文摘We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe thepossible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
基金Project(50875257) supported by the National Natural Science Foundation of China
文摘The quality of the micro-mechanical machining outcome depends significantly on the tracking performance of the miniaturized linear motor drive precision stage. The tracking behavior of a direct drive design is prone to uncertainties such as model parameter variations and disturbances. Robust optimal tracking controller design for this kind of precision stages with mass and damping ratio uncertainties was researched. The mass and damping ratio uncertainties were modeled as the structured parametric uncertainty model. An identification method for obtaining the parametric uncertainties was developed by using unbiased least square technique. The instantaneous frequency bandwidth of the external disturbance signals was analyzed by using short time Fourier transform technique. A two loop tracking control strategy that combines the p-synthesis and the disturbance observer (DOB) techniques was proposed. The p-synthesis technique was used to design robust optimal controllers based on structured uncertainty models. By complementing the/z controller, the DOB was applied to further improving the disturbance rejection performance. To evaluate the positioning performance of the proposed control strategy, the comparative experiments were conducted on a prototype micro milling machine among four control schemes: the proposed two-loop tracking control, the single loop μ control, the PID control and the PID with DOB control. The disturbance rejection performances, the root mean square (RMS) tracking errors and the performance robustness of different control schemes were studied. The results reveal that the proposed control scheme has the best positioning performance. It reduces the maximal errors caused by disturbance forces such as friction force by 60% and the RMS errors by 63.4% compared with the PID control. Compared to PID with DOB control, it reduces the RMS errors by 29.6%.
基金Projects(61173026,61373045,61202039)supported by the National Natural Science Foundation of ChinaProject(2012AA02A603)supported by the National High Technology Research and Development Program of China+1 种基金Projects(K5051223008,K5051223002)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(513***103E)supported by the Pre-Research Project of the"Twelfth Five-Year-Plan"of China
文摘In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and position agents accurately and complete the system integration by the keyword matching method,due to the lack of clear semantic information of the classical agent model.An semantic-based agent dynamic positioning mechanism was proposed to assist in the system dynamic integration.According to the semantic agent model and the description method,a two-stage process including the domain positioning stage and the service semantic matching positioning stage,was discussed.With this mechanism,proper agents that provide appropriate service to assign sub-tasks for task completion can be found quickly and accurately.Finally,the effectiveness of the positioning mechanism was validated through the in-depth performance analysis in the application of simulation experiments to the system dynamic integration.
基金The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported in part by Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No. IRT1078 Key Program of NSFC-Guangdong Union Foundation under Grant No. U1135002+3 种基金 National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No. 2011ZX03005- 002 National Natural Science Foundation of China under Grant No.61173135 Natural Science Foundation of Shaanxi Province under Grant No.2014JQ8297 Fundamental Research Funds for the Central Universities of Ministry of Education of China under Grant Nos. JY 10000903001, K5051303007, K5051203012.
文摘Investigating the stability of information spreading over SNS helps to understand the principles inherent in the spreading behavior.This paper explores the mechanisms of information spreading including stifling mechanism,latent mechanism and forgetting mechanism,establishes a refined SEIR model,and builds the corresponding mean-field equations.The methods of the differential dynamics and the next generation matrix are used to calculate the equilibriums and the basic reproductive number,and the asymptotical stability of the network equilibriums are proved theoretically.Simulation experiments are carried out to analyze the effect of the spreading mechanisms on the information spreading process and the results support our conclusions.
基金National Natural Science Foundation of China(No.60574081)
文摘By means of the feasibility of some linear matrix inequalities(LMIs),delay dependent sufficient condition is derived for the existence of a linear sliding surface,which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface.And a reaching motion controller is proposed.A numerical simulation shows the effectiveness of the approach.
文摘The purpose of this work is to investigate the asymptotic properties of a stochastic Gilpin--Ayala population system under regime switching on patches. We establish the global stability and the extinction of the trivial equilibrium state of the model. Further- more, we show the existence of the stationary distribution for our system model. The analytical results are illustrated by computer simulations.