Soil stabilization has been found to be very effective in upgrading the bearing capacity of weak soils for construction purposes. The stabilizing agent, for cost efficiency, ought to provide a cheaper alternative to o...Soil stabilization has been found to be very effective in upgrading the bearing capacity of weak soils for construction purposes. The stabilizing agent, for cost efficiency, ought to provide a cheaper alternative to other possible processes. With the rapid industrialization efforts around the globe, enormous quantities of waste materials are generated and there has not been adequate mechanism for recycling and re-use of such wastes to reduce the consequent environmental problems and hazardous situations created as a result. The objective of the study is to upgrade expansive soils from Eke Obinagu, Ugwuaji in Enugu State and Egbede in Abia State Nigeria, as constructions material using RHA (rice husk ash). Expansive clay soils were mixed with this ash, remolded and tested to examine the effect on the OMC (optimum moisture content) and the CBR (California Bearing Ratio). The characterization of the soils was done in accordance with BS1377 and 1990b, with respect to their engineering properties which include OMC, MDD, Soaked CBR, Liquid Limit, Classification and Sieve Analysis. The rice husk was burnt and prepared in a cylindrical incinerator to form the ash. The results of classification showed A-7-5, A-6, A-2-7 soils for Eke Obinagu, Egbede and Ugwuaji, respectively. The CBR values showed increase from 5% to 29%, 7% to 13% and 5% to 23% for A-7-5, A-6 ~nd A-2-7 respectively at optimal value of 17.5% stabilization. There was also an appreciable increase in the OMC values from 15% to 33%, 14% to 25% and 15% to 31% for A-7-5, A-6 and A-2-7 soils respectively at 17.5% stabilization. Empirical models based on Scheffe's model were developed with the experimental results and the equations resulting from the second degree polynomials of Scheffe's models were solved using the least square method. The models developed showed close correlation with the experimental results for the A-7-5 and A-6 soils and will form good guide in pavement and foundation designs in the study areas.展开更多
Different scaling behaviors, such as Kolmogorov (K41) scaling and Bolgiano and Obukhov (BO) scaling, have been reported in various shell models proposed for turbulent thermal convection. However, two coexistent subran...Different scaling behaviors, such as Kolmogorov (K41) scaling and Bolgiano and Obukhov (BO) scaling, have been reported in various shell models proposed for turbulent thermal convection. However, two coexistent subranges with K41 and BO scaling are not set up with Bolgiano scale interlaying between the largest scale and the dissipation scale. In this paper, we summarize fixed-point solution study of the Brandenburg model with small perturbation theory by introducing a small disturbance term as the impact of buoyancy. Three groups of fixed-point solutions with different locations of the so-called buoyancy scale, above/below which buoyancy is significant/insignifant. Both theoretical and numerical results show that a modified K41 scaling, instead of K41 and BO coexistent scaling, is set up even though buoyancy may be significant over the scaling range, which suggests that the buoyancy scale is not related exactly to the Bolgiano scale. Thus, a K41 and BO coexistent scaling behavior is not setup for the Brandenburg model.展开更多
文摘Soil stabilization has been found to be very effective in upgrading the bearing capacity of weak soils for construction purposes. The stabilizing agent, for cost efficiency, ought to provide a cheaper alternative to other possible processes. With the rapid industrialization efforts around the globe, enormous quantities of waste materials are generated and there has not been adequate mechanism for recycling and re-use of such wastes to reduce the consequent environmental problems and hazardous situations created as a result. The objective of the study is to upgrade expansive soils from Eke Obinagu, Ugwuaji in Enugu State and Egbede in Abia State Nigeria, as constructions material using RHA (rice husk ash). Expansive clay soils were mixed with this ash, remolded and tested to examine the effect on the OMC (optimum moisture content) and the CBR (California Bearing Ratio). The characterization of the soils was done in accordance with BS1377 and 1990b, with respect to their engineering properties which include OMC, MDD, Soaked CBR, Liquid Limit, Classification and Sieve Analysis. The rice husk was burnt and prepared in a cylindrical incinerator to form the ash. The results of classification showed A-7-5, A-6, A-2-7 soils for Eke Obinagu, Egbede and Ugwuaji, respectively. The CBR values showed increase from 5% to 29%, 7% to 13% and 5% to 23% for A-7-5, A-6 ~nd A-2-7 respectively at optimal value of 17.5% stabilization. There was also an appreciable increase in the OMC values from 15% to 33%, 14% to 25% and 15% to 31% for A-7-5, A-6 and A-2-7 soils respectively at 17.5% stabilization. Empirical models based on Scheffe's model were developed with the experimental results and the equations resulting from the second degree polynomials of Scheffe's models were solved using the least square method. The models developed showed close correlation with the experimental results for the A-7-5 and A-6 soils and will form good guide in pavement and foundation designs in the study areas.
基金supported by the National Natural Science Foundation of China (Grant No.10902007)the Fundamental Research Funds for the Central Universitiesthe National Basic Research Program of China (Grant No.2009CB724001)
文摘Different scaling behaviors, such as Kolmogorov (K41) scaling and Bolgiano and Obukhov (BO) scaling, have been reported in various shell models proposed for turbulent thermal convection. However, two coexistent subranges with K41 and BO scaling are not set up with Bolgiano scale interlaying between the largest scale and the dissipation scale. In this paper, we summarize fixed-point solution study of the Brandenburg model with small perturbation theory by introducing a small disturbance term as the impact of buoyancy. Three groups of fixed-point solutions with different locations of the so-called buoyancy scale, above/below which buoyancy is significant/insignifant. Both theoretical and numerical results show that a modified K41 scaling, instead of K41 and BO coexistent scaling, is set up even though buoyancy may be significant over the scaling range, which suggests that the buoyancy scale is not related exactly to the Bolgiano scale. Thus, a K41 and BO coexistent scaling behavior is not setup for the Brandenburg model.