Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of t...Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.展开更多
Based on the research, simulation and experimental investigation of Basilisk Lizard running on the water surface, and similar experimental investigation of the craft models and practical crafts running on the water su...Based on the research, simulation and experimental investigation of Basilisk Lizard running on the water surface, and similar experimental investigation of the craft models and practical crafts running on the water surface for about 30 years. The Bionic Lizard Flying Wheel Planing Craft was created and invented. This paper describes the evolution, experimental investigation, test results, design features, advantages, applications, and prospect of the innovation, which denotes the craft with excellent speed performance (high speed, extra STOL (short take-off and landing distance) and VTOL(vertical take-off and landing) characteristics, good transverse and longitudinal stability, super shallow water draft, high propulsion efficiency at high speed without cavitations obstacle, low external field noise, small dimension, simple configuration and structure, good economy, nice transportation efficiency, and possibly is first of these kinds in the HPMV (High Performance Marine Vessels) family around the world.展开更多
Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of ...Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of numerical models defined in the programming language Formian during the shaping processes of various types of spatial structural systems designed for roof covers. These types of numerical models can be relatively easily adapted to the requirements, which can be frequently changed during the investment process, what makes possible a considerable reducing of costs and time of design of the space structures having even the very complex shapes. The advantageous features of application of numerical models defined in Formian are presented in models determined for selected forms of the roof covers designed also by means of a simple type of a space frame. In the paper, there are some presented visualizations made on bases of these models defining mainly for structural systems developed recently by the author for certain types of the dome covers. The proposed structural systems are built by means of the successive spatial hoops or they are created as unique forms of the geodesic dome structures.展开更多
A cogeneration plant can run at off-design due to change of load demand or ambient conditions. The cogeneration considered for this study is gas turbine based engine consists of variable stator vanes (VSVs) compress...A cogeneration plant can run at off-design due to change of load demand or ambient conditions. The cogeneration considered for this study is gas turbine based engine consists of variable stator vanes (VSVs) compressor that are re-staggered for loads greater than 50% to maintain the gas turbine exhaust gas temperature at the set value. In order to evaluate the exergetic performance of the cogeneration, exergy model of each cogeneration component is formulated. A 4.2 MW gas turbine based cogeneration plant is analysed for a wide range of part load operations including the effect of VSVs modulation. For loads less than 50%, the major exergy destruction contributors are the combustor and the loss with the stack gas. At full load, the exergy destructions in the combustor, turbine, heat recovery, compressor and the exergy loss with stack gas are 63.7, 14.1, 11.5, 5.7, and 4.9%, respectively. The corresponding first and second law cogeneration efficiencies are 78.5 and 45%, respectively. For comparison purpose both the first and second law efticiencies of each component are represented together. This analysis would help to identify the equipment where the potential for performance improvement is high, and trends which may aid in the design of future plants.展开更多
In this paper, the nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fue...In this paper, the nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using a Lyapunov's stability analysis strategy.展开更多
Performance-Based Design (PBD) is a more rational approach, particularly in seismic environments. In this approach it is relevant the performance required to structures and to geotechnical works, as well as the geot...Performance-Based Design (PBD) is a more rational approach, particularly in seismic environments. In this approach it is relevant the performance required to structures and to geotechnical works, as well as the geotechnical constitutive models used to predict the performance. The parameters of the constitutive models are related in turn to soil properties. So soil properties are a key point for Performance-Based Design. Questions arising are: (i) which are the more relevant soil properties to solve a specific PBD geotechnical problem? (ii) which are the more relevant model parameters and how they can be evaluated and/or correlated to soil properties? (iii) which is the role of the soil parameters uncertainty in Performance-Based Design? An answer to these questions is given in this paper, outlining the potential offered by the new advanced in-situ and laboratory tests and discussing the performance required by some geotechnical works.展开更多
In generalized linear models with fixed design, under the assumption λ↑_n→∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator ^↑βn, which is the root of the quasi-li...In generalized linear models with fixed design, under the assumption λ↑_n→∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator ^↑βn, which is the root of the quasi-likelihood equation with natural link function ∑i=1^n Xi(yi -μ(Xi′β)) = 0, is obtained, where λ↑_n denotes the minimum eigenvalue of ∑i=1^nXiXi′, Xi are bounded p × q regressors, and yi are q × 1 responses.展开更多
In a classical layout process of a fan the quantity of losses is estimated as a sum and expressed in the overall efficiency rote However the characteristic of the pressure rise, the losses and the efficiency rate besi...In a classical layout process of a fan the quantity of losses is estimated as a sum and expressed in the overall efficiency rote However the characteristic of the pressure rise, the losses and the efficiency rate beside the design point is not known. Against this background a numerical model was developed to calculate quantitative values of occurring losses at radial fan impellers at an early stage in the design process. It allows to estimate the pressure rise and efficiency rate of a given fan geometry at and beside the design point. The physics of losses are described in literature, but obtaining quantitative values is still a challenge. As common in hydraulic theory the losses are calculated with analytic formulas supported by coefficients and efficiency rates, which have to be determined empirically. This paper shows the method how to determine the coefficients for a given radial fan. Therefore a representative radial fan with backward curved blades was designed in reference to classical design guidelines. Performance measuring was done conform to ISO 5801. The flow was calculated at 8 different operation points using CFD methods. The RANS equations are solved by using the SST-k-omega turbulence model. The flow do- main consists of one blade section including inlet channel and outflow chamber. Spatial discretization is done by a block-structured mesh of approx. 1.8 million cells. Performance data show a very good agreement between measurement and calculation.展开更多
基金Project(51178061)supported by the National Natural Science Foundation of ChinaProject(2010FJ6016)supported by Hunan Provincial Science and Technology,China+1 种基金Project(12C0015)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(13JJ3072)supported by Hunan Provincial Natural Science Foundation of China
文摘Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.
文摘Based on the research, simulation and experimental investigation of Basilisk Lizard running on the water surface, and similar experimental investigation of the craft models and practical crafts running on the water surface for about 30 years. The Bionic Lizard Flying Wheel Planing Craft was created and invented. This paper describes the evolution, experimental investigation, test results, design features, advantages, applications, and prospect of the innovation, which denotes the craft with excellent speed performance (high speed, extra STOL (short take-off and landing distance) and VTOL(vertical take-off and landing) characteristics, good transverse and longitudinal stability, super shallow water draft, high propulsion efficiency at high speed without cavitations obstacle, low external field noise, small dimension, simple configuration and structure, good economy, nice transportation efficiency, and possibly is first of these kinds in the HPMV (High Performance Marine Vessels) family around the world.
文摘Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of numerical models defined in the programming language Formian during the shaping processes of various types of spatial structural systems designed for roof covers. These types of numerical models can be relatively easily adapted to the requirements, which can be frequently changed during the investment process, what makes possible a considerable reducing of costs and time of design of the space structures having even the very complex shapes. The advantageous features of application of numerical models defined in Formian are presented in models determined for selected forms of the roof covers designed also by means of a simple type of a space frame. In the paper, there are some presented visualizations made on bases of these models defining mainly for structural systems developed recently by the author for certain types of the dome covers. The proposed structural systems are built by means of the successive spatial hoops or they are created as unique forms of the geodesic dome structures.
文摘A cogeneration plant can run at off-design due to change of load demand or ambient conditions. The cogeneration considered for this study is gas turbine based engine consists of variable stator vanes (VSVs) compressor that are re-staggered for loads greater than 50% to maintain the gas turbine exhaust gas temperature at the set value. In order to evaluate the exergetic performance of the cogeneration, exergy model of each cogeneration component is formulated. A 4.2 MW gas turbine based cogeneration plant is analysed for a wide range of part load operations including the effect of VSVs modulation. For loads less than 50%, the major exergy destruction contributors are the combustor and the loss with the stack gas. At full load, the exergy destructions in the combustor, turbine, heat recovery, compressor and the exergy loss with stack gas are 63.7, 14.1, 11.5, 5.7, and 4.9%, respectively. The corresponding first and second law cogeneration efficiencies are 78.5 and 45%, respectively. For comparison purpose both the first and second law efticiencies of each component are represented together. This analysis would help to identify the equipment where the potential for performance improvement is high, and trends which may aid in the design of future plants.
文摘In this paper, the nonlinear state feedback controller has been developed to control the pressures of the oxygen and the hydrogen in the PEM(Proton Exchange Membrane) fuel cell system. Nonlinear model of the PEM fuel cell system was introduced to study the design problems of the state observer and model based controller. A cascade observer using the filtering technique was used to estimate the pressure derivatives of the cathode and the anode in the system. In order to estimate the pressures of the cathode and the anode, the sliding mode observer was designed by using these pressure derivatives. To estimate the oxygen pressure and the hydrogen pressure in the system, the nonlinear state observer was designed by using the cathode pressure estimates and the anode it. These results will be very useful to design the state feedback controller. The validity of the proposed observers and the controller has been investigated by using a Lyapunov's stability analysis strategy.
文摘Performance-Based Design (PBD) is a more rational approach, particularly in seismic environments. In this approach it is relevant the performance required to structures and to geotechnical works, as well as the geotechnical constitutive models used to predict the performance. The parameters of the constitutive models are related in turn to soil properties. So soil properties are a key point for Performance-Based Design. Questions arising are: (i) which are the more relevant soil properties to solve a specific PBD geotechnical problem? (ii) which are the more relevant model parameters and how they can be evaluated and/or correlated to soil properties? (iii) which is the role of the soil parameters uncertainty in Performance-Based Design? An answer to these questions is given in this paper, outlining the potential offered by the new advanced in-situ and laboratory tests and discussing the performance required by some geotechnical works.
基金the National Natural Science Foundation of China under Grant Nos.10171094,10571001,and 30572285the Foundation of Nanjing Normal University under Grant No.2005101XGQ2B84+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No.07KJD110093the Foundation of Anhui University under Grant No.02203105
文摘In generalized linear models with fixed design, under the assumption λ↑_n→∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator ^↑βn, which is the root of the quasi-likelihood equation with natural link function ∑i=1^n Xi(yi -μ(Xi′β)) = 0, is obtained, where λ↑_n denotes the minimum eigenvalue of ∑i=1^nXiXi′, Xi are bounded p × q regressors, and yi are q × 1 responses.
文摘In a classical layout process of a fan the quantity of losses is estimated as a sum and expressed in the overall efficiency rote However the characteristic of the pressure rise, the losses and the efficiency rate beside the design point is not known. Against this background a numerical model was developed to calculate quantitative values of occurring losses at radial fan impellers at an early stage in the design process. It allows to estimate the pressure rise and efficiency rate of a given fan geometry at and beside the design point. The physics of losses are described in literature, but obtaining quantitative values is still a challenge. As common in hydraulic theory the losses are calculated with analytic formulas supported by coefficients and efficiency rates, which have to be determined empirically. This paper shows the method how to determine the coefficients for a given radial fan. Therefore a representative radial fan with backward curved blades was designed in reference to classical design guidelines. Performance measuring was done conform to ISO 5801. The flow was calculated at 8 different operation points using CFD methods. The RANS equations are solved by using the SST-k-omega turbulence model. The flow do- main consists of one blade section including inlet channel and outflow chamber. Spatial discretization is done by a block-structured mesh of approx. 1.8 million cells. Performance data show a very good agreement between measurement and calculation.