The current manuscript is reported about the eiectro-osmotic Couette-Poiseuille ftow of power law Al2O3- PVC nanofluid through a channel, in which upper wall is moving with constant velocity. The influences of magneti...The current manuscript is reported about the eiectro-osmotic Couette-Poiseuille ftow of power law Al2O3- PVC nanofluid through a channel, in which upper wall is moving with constant velocity. The influences of magnetic field, mixed convection, joule heating, and viscous dissipation are also incorporated. The flow is generated because of constant pressure gradient in axial direction. The resulting flow problem is coupled nonlinear ordinary differential equations, which are at first modeled and then transform into dimensionless form through appropriate transformation. Analytical solution of the governing is carried out. The impact of modified Brinkman number, modified Magnetic field, electro-osmotic parameters on velocity and temperature are examined graphically. From the results, it is concluded that the Skin friction at moving isolated wail decreases with the increase of electro-osmotic parameter and reverse behavior for Nusselt number at heated stationary wall occur.展开更多
We present an epidemic model which can incorporate essential biological detail as well as the intrinsic demographic stochastieity of the epidemic process, yet is very simple, enabling rapid generation of a large numbe...We present an epidemic model which can incorporate essential biological detail as well as the intrinsic demographic stochastieity of the epidemic process, yet is very simple, enabling rapid generation of a large number of simulations, A deterministic version of the model is also derived, in the limit of infinitely large populations, and a final-size formula for the deterministic model is proved. A key advantage of the model proposed is that it is possible to write down an explicit likelihood functions for it, which enables a systematic procedure for fitting parameters to real incidence data, using maximum likelihood.展开更多
We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solution...We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions.展开更多
Effects of the inlet guide vanes on the static characteristics, aerodynamic noise and internal flow characteristics of a small axial flow fan are studied in this work. The inlet guide vanes with different outlet angle...Effects of the inlet guide vanes on the static characteristics, aerodynamic noise and internal flow characteristics of a small axial flow fan are studied in this work. The inlet guide vanes with different outlet angle are designed, which are mounted on the casing and located at the upstream of the impeller of the prototype fan. Both steady and unsteady flow simulations arc performed. The steady flow is simulated by the calculations of Navier-Stokes equa- tions coupled with RNG k-epsilon turbulence model, while the unsteady flow is computed with large eddy simu- lation. According to the theoretical analysis, the inlet guide vanes with outlet angle of 60° are regarded as the op- timal inlet guide vanes. The static characteristic experiment is carried out in a standard test rig and the aerody- namic noise is tested in a semi-anechoic room. Then, performances of the fan with optimal inlet guide vanes are compared with those of the prototype fan. The results show that there is reasonable agreement between the simu- lation results and the experimental data. It is found that the static characteristics of small axial flow fan is im- proved obviously after installing the optimal inlet guide vanes. Meanwhile, the optimal inlet guide vanes have effect on reducing noise at the near field, but have little effect on the noise at the far field.展开更多
Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equiv...Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equivalent to a uniform rotating motion which can be analyzed by using the stream surface theory of turbomachinery during a micro period of time. In this article, the N-S equations of the motion are expanded in a non-orthogonal curvilinear coordinate system, and simplified on stream surfaces of the flapping flight model. By using stream function me- thod, the three-dimensional unsteady flow equations are simplified as a two-order partial differential equation with variable coefficients eventually and the equation's iterative solving method on S1 and $2 stream surfaces of the flapping flight model is presented. Through expanding the relatively steady equations of flapping flight at an arbitrary time point of a stroke on meridional plane of the flapping flight model, it can use a relatively steady mo- tion to approximate the real flapping flight at that time point, and analyze the flow stability influenced by the wing's flexibility. It can be seen that the wing flexibility is related to the higher pressurization capacity and the flow stability, and the pressurization capacity of flexible wing is proportional to the angular speed, angular distor- tion rate and radius square.展开更多
The author reviews briefly some of the recent results on the blow-up problem for the incompressible Euler equations on RN,and also presents Liouville type theorems for the incompressible and compressible fluid equations.
文摘The current manuscript is reported about the eiectro-osmotic Couette-Poiseuille ftow of power law Al2O3- PVC nanofluid through a channel, in which upper wall is moving with constant velocity. The influences of magnetic field, mixed convection, joule heating, and viscous dissipation are also incorporated. The flow is generated because of constant pressure gradient in axial direction. The resulting flow problem is coupled nonlinear ordinary differential equations, which are at first modeled and then transform into dimensionless form through appropriate transformation. Analytical solution of the governing is carried out. The impact of modified Brinkman number, modified Magnetic field, electro-osmotic parameters on velocity and temperature are examined graphically. From the results, it is concluded that the Skin friction at moving isolated wail decreases with the increase of electro-osmotic parameter and reverse behavior for Nusselt number at heated stationary wall occur.
文摘We present an epidemic model which can incorporate essential biological detail as well as the intrinsic demographic stochastieity of the epidemic process, yet is very simple, enabling rapid generation of a large number of simulations, A deterministic version of the model is also derived, in the limit of infinitely large populations, and a final-size formula for the deterministic model is proved. A key advantage of the model proposed is that it is possible to write down an explicit likelihood functions for it, which enables a systematic procedure for fitting parameters to real incidence data, using maximum likelihood.
基金supported by National Basic Research Program of China(973 Program)(Grant No.2011CB808002)National Natural Science Foundation of China(Grant Nos.11071086,11371152,11401439 and 11128102)+3 种基金the Natural Science Foundation of Guangdong Province(Grant No.S2012010010408)the Foundation for Distinguished Young Talents in Higher Education of Guangdong(Grant No.2014KQNCX162)the University Special Research Foundation for Ph.D Program(Grant No.20104407110002)the Science Foundation for Young Teachers of Wuyi University(Grant No.2014zk06)
文摘We consider a complex fluid modeling nematic liquid crystal flows, which is described by a system coupling Navier-Stokes equations with a parabolic Q-tensor system. We first prove the global existence of weak solutions in dimension three. Furthermore, the global well-posedness of strong solutions is studied with sufficiently large viscosity of fluid. Finally, we show a continuous dependence result on the initial data which directly yields the weak-strong uniqueness of solutions.
基金supported by National Natural Science Foundation of China No.51276172Public Welfare Technology Application Projects of Zhejiang Province NO.2015C31002Open Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and ZSTUMEOIA04 and 2013TD18
文摘Effects of the inlet guide vanes on the static characteristics, aerodynamic noise and internal flow characteristics of a small axial flow fan are studied in this work. The inlet guide vanes with different outlet angle are designed, which are mounted on the casing and located at the upstream of the impeller of the prototype fan. Both steady and unsteady flow simulations arc performed. The steady flow is simulated by the calculations of Navier-Stokes equa- tions coupled with RNG k-epsilon turbulence model, while the unsteady flow is computed with large eddy simu- lation. According to the theoretical analysis, the inlet guide vanes with outlet angle of 60° are regarded as the op- timal inlet guide vanes. The static characteristic experiment is carried out in a standard test rig and the aerody- namic noise is tested in a semi-anechoic room. Then, performances of the fan with optimal inlet guide vanes are compared with those of the prototype fan. The results show that there is reasonable agreement between the simu- lation results and the experimental data. It is found that the static characteristics of small axial flow fan is im- proved obviously after installing the optimal inlet guide vanes. Meanwhile, the optimal inlet guide vanes have effect on reducing noise at the near field, but have little effect on the noise at the far field.
文摘Through analyzing the motion characteristics of bird-like flapping flight, it is considered that the wing angular acceleration is equal to zero at the point of maximum angular speed. Thus, the flapping flight is equivalent to a uniform rotating motion which can be analyzed by using the stream surface theory of turbomachinery during a micro period of time. In this article, the N-S equations of the motion are expanded in a non-orthogonal curvilinear coordinate system, and simplified on stream surfaces of the flapping flight model. By using stream function me- thod, the three-dimensional unsteady flow equations are simplified as a two-order partial differential equation with variable coefficients eventually and the equation's iterative solving method on S1 and $2 stream surfaces of the flapping flight model is presented. Through expanding the relatively steady equations of flapping flight at an arbitrary time point of a stroke on meridional plane of the flapping flight model, it can use a relatively steady mo- tion to approximate the real flapping flight at that time point, and analyze the flow stability influenced by the wing's flexibility. It can be seen that the wing flexibility is related to the higher pressurization capacity and the flow stability, and the pressurization capacity of flexible wing is proportional to the angular speed, angular distor- tion rate and radius square.
基金Project supported by KRF Grant (MOEHRD,Basic Research Promotion Fund)
文摘The author reviews briefly some of the recent results on the blow-up problem for the incompressible Euler equations on RN,and also presents Liouville type theorems for the incompressible and compressible fluid equations.