Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves...Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.展开更多
基金Foundation item: Projects(41172273, 40802079, 51108288) supported by the National Natural Science Foundation of China Project(KLE-TJGE-B1106) supported by the Opening Fund of Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University), China
文摘Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.