To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed i...To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed in this paper. And then numerical calculations were carried out. The effects on downstream flow field were studied and analyzed in detail. Results show that, at the middle of stator blades, although the increasing Maeh number causes the increase of shock-wave strength and friction, the middle flow field of downstream rotors is improved obviously. It is an important change in transonic condition. This causes the loss of the rotor' s middle part decreased greatly. Correspondingly, efficiency of the whole transonic stage can be increased.展开更多
This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positiv...This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.展开更多
Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. ...Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. the basic parameters of the generator, the geometry dimensions of the stator and rotor, type and sizes of the slots, coils and windings parameters and the way of windings connection are determined. The finite element model of electromagnetic systems of generator stator and rotor was constructed by Ansoft Maxwe112D3D 12.1, and the transient electromagnetic characteristics of generator was analyzed and simulated. The 3D geometric models of turbo-generator were established respectively by using PROE software, and the dynamic finite element model of generator structure was built by ANSYS workbench 11.0. In addition, the dynamic characteristics of stator iron core, stator frame were calculated respectively. The simulation calculation has shown that the structural parameters, material parameters, and the electromagnetic characteristics parameters for large turbogenerator that are put forward by this paper should be optimal. and the design plan and method suggested by this paper should be feasible. The paper provides an effective solution for the development of larger turbo-generator than 1000 MW.展开更多
The blade row interaction can alter the time-mean flow and therefore be of interest for aerodynamic design analysis. Whereas results within low subsonic turbomachines are quite numerous in the literature, there have b...The blade row interaction can alter the time-mean flow and therefore be of interest for aerodynamic design analysis. Whereas results within low subsonic turbomachines are quite numerous in the literature, there have been far fewer works which give results of blade row interaction within high speed cases. Two cases are related in this paper. First, the effects of an incoming wake on the rotor flow field of a transonic compressor are analyzed. The blade row interaction proved to be positive regarding the total pressure ratio, but negative regarding the losses. The second case concerns a transonic turbine. Particular emphasis is placed on the assessment of the deterministic correlations included in the Averaged Passage Equation System.展开更多
Experiment measurement is adapted to study the secondary flow of turbine.The subsonic stator experiment flow tunnel is set up.Two different inlet velocities and three different stator heights are applied.The method of...Experiment measurement is adapted to study the secondary flow of turbine.The subsonic stator experiment flow tunnel is set up.Two different inlet velocities and three different stator heights are applied.The method of a rotating slanted hotwire is introduced to measure the stator outlet three-dimensional flow field.The procedure for solving the mean three-dimensional velocity component involving the least-squares technique can be accomplished via the LSQNONLIN optimization function of Matlab.Under different work conditions,the stator outlet secondary flow is more intense at higher inlet flux.Moreover,the shortest stator height will lead to the most intense secondary flow,which gains the largest axial velocity component(w) and radial velocity component (u),but the smallest circumferential velocity component(v).展开更多
Accurate calculation of circulating current is one of the key problems for stator transposition bars in the design of turbo-generators. Aimed at limitation that analytical algorithm of circulating current could not re...Accurate calculation of circulating current is one of the key problems for stator transposition bars in the design of turbo-generators. Aimed at limitation that analytical algorithm of circulating current could not reflect the local electromagnetic field distribution and difficulty that overlaps easily exist in solid modeling process of stator transposition bars, a simplified physical model of transposition bars is established. A three-dimensional(3-D) numerical method for circulating current in stator transposition bars of large water-cooled turbo-generators is investigated, which is combined with field-circuit coupling method. Taking stator bars less than 540° transposition with void model of a 600-MW water-cooled turbo-generator as the research object, the magnetic flux density distribution, current density distribution and circulating current distribution of transposition strands are obtained by numerical calculation. Compared with calculation results of the improved analytical algorithm, the correctness of the numerical calculation for circulating current is demonstrated, the calculation value difference for the maximum current of strands is obtained. The numerical calculation for circulating current will provide an appropriate basis for the reasonable calculation of local overheating of stator transposition bars and the design of safety margin for turbo-generators.展开更多
文摘To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed in this paper. And then numerical calculations were carried out. The effects on downstream flow field were studied and analyzed in detail. Results show that, at the middle of stator blades, although the increasing Maeh number causes the increase of shock-wave strength and friction, the middle flow field of downstream rotors is improved obviously. It is an important change in transonic condition. This causes the loss of the rotor' s middle part decreased greatly. Correspondingly, efficiency of the whole transonic stage can be increased.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This paper proposes an analysis and a direct power control (DPC) design of a wind turbine driven doubly-fed induction generator (DFIG) under unbalanced network voltage conditions. A DFIG model described in the positive and negative synchronous reference frames is presented. Variations of the stator output active and reactive powers are fully deduced in the presence of negative sequence supply voltage and rotor flux. An enhanced DPC scheme is proposed to eliminate stator active power oscillation during network unbalance. The proposed control scheme removes rotor current regulators and the decomposition processing of positive and negative sequence rotor currents. Simulation results using PSCAD/EMTDC are presented on a 2-MW DFIG wind power generation system to validate the feasibility of the proposed control scheme under balanced and unbalanced network conditions.
文摘Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. the basic parameters of the generator, the geometry dimensions of the stator and rotor, type and sizes of the slots, coils and windings parameters and the way of windings connection are determined. The finite element model of electromagnetic systems of generator stator and rotor was constructed by Ansoft Maxwe112D3D 12.1, and the transient electromagnetic characteristics of generator was analyzed and simulated. The 3D geometric models of turbo-generator were established respectively by using PROE software, and the dynamic finite element model of generator structure was built by ANSYS workbench 11.0. In addition, the dynamic characteristics of stator iron core, stator frame were calculated respectively. The simulation calculation has shown that the structural parameters, material parameters, and the electromagnetic characteristics parameters for large turbogenerator that are put forward by this paper should be optimal. and the design plan and method suggested by this paper should be feasible. The paper provides an effective solution for the development of larger turbo-generator than 1000 MW.
文摘The blade row interaction can alter the time-mean flow and therefore be of interest for aerodynamic design analysis. Whereas results within low subsonic turbomachines are quite numerous in the literature, there have been far fewer works which give results of blade row interaction within high speed cases. Two cases are related in this paper. First, the effects of an incoming wake on the rotor flow field of a transonic compressor are analyzed. The blade row interaction proved to be positive regarding the total pressure ratio, but negative regarding the losses. The second case concerns a transonic turbine. Particular emphasis is placed on the assessment of the deterministic correlations included in the Averaged Passage Equation System.
文摘Experiment measurement is adapted to study the secondary flow of turbine.The subsonic stator experiment flow tunnel is set up.Two different inlet velocities and three different stator heights are applied.The method of a rotating slanted hotwire is introduced to measure the stator outlet three-dimensional flow field.The procedure for solving the mean three-dimensional velocity component involving the least-squares technique can be accomplished via the LSQNONLIN optimization function of Matlab.Under different work conditions,the stator outlet secondary flow is more intense at higher inlet flux.Moreover,the shortest stator height will lead to the most intense secondary flow,which gains the largest axial velocity component(w) and radial velocity component (u),but the smallest circumferential velocity component(v).
基金supported by the National Natural Science Foundation of China(Grant No.51477038)
文摘Accurate calculation of circulating current is one of the key problems for stator transposition bars in the design of turbo-generators. Aimed at limitation that analytical algorithm of circulating current could not reflect the local electromagnetic field distribution and difficulty that overlaps easily exist in solid modeling process of stator transposition bars, a simplified physical model of transposition bars is established. A three-dimensional(3-D) numerical method for circulating current in stator transposition bars of large water-cooled turbo-generators is investigated, which is combined with field-circuit coupling method. Taking stator bars less than 540° transposition with void model of a 600-MW water-cooled turbo-generator as the research object, the magnetic flux density distribution, current density distribution and circulating current distribution of transposition strands are obtained by numerical calculation. Compared with calculation results of the improved analytical algorithm, the correctness of the numerical calculation for circulating current is demonstrated, the calculation value difference for the maximum current of strands is obtained. The numerical calculation for circulating current will provide an appropriate basis for the reasonable calculation of local overheating of stator transposition bars and the design of safety margin for turbo-generators.