Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of...Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.展开更多
traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to...traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.展开更多
Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and ant...Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.展开更多
Heliostats are sensitive to the wind load, thus as a key indicator, the study on the static and dynamic stability bearing capacity for heliostats is very important. In this work, a numerical wind tunnel was establishe...Heliostats are sensitive to the wind load, thus as a key indicator, the study on the static and dynamic stability bearing capacity for heliostats is very important. In this work, a numerical wind tunnel was established to calculate the wind load coefficients in various survival stow positions. In order to explore the best survival stow position for the heliostat under the strong wind, eigenvalue buckling analysis method was introduced to predict the critical wind load theoretically. Considering the impact of the nonlinearity and initial geometrical imperfection, the nonlinear post-buckling behaviors of the heliostat were investigated by load-displacement curves in the full equilibrium process. Eventually, combining B-R criterion with equivalent displacement principle the dynamic critical wind speed and load amplitude coefficient were evaluated. The results show that the determination for the best survival stow position is too hasty just by the wind load coefficients. The geometric nonlinearity has a great effect on the stability bearing capacity of the heliostat, while the effects of the material nonlinearity and initial geometrical imperfection are relatively small. And the heliostat is insensitive to the initial geometrical imperfection. In addition, the heliostat has the highest safety factor for wind-resistant performance in the stow position of 90-90 which can be taken as the best survival stow position. In this case, the extreme survival wind speeds for the static and dynamic stability are 150 m/s and 36 m/s, respectively.展开更多
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional...The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.展开更多
The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a ...The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.展开更多
A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability asse...A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability assessment of the engineering design. In underground coal mining applications such as pillar design,however, the inputs of pillar design are variables. This is widely overlooked in the deterministic approach. A probabilistic approach assessing the probability of failure or reliability of a system might be an alternative to the conventional quantitative methodology. This approach can incorporate the degree of uncertainty and deviations of variables and provide more versatile and reliable results. In this research, the reliability of case histories from stable and failed pillars of South Africa presented by Merwe and Mathey is examed. The updated Salamon and Munro strength formula(S-M formula) and Merwe and Mathey strength formula(M-M formula) are evaluated through a probabilistic approach. It is concluded that stable pillar cases have a reliability value greater than 0.83 while the reliability value of failed pillar cases are slightly larger than 0.50. There seems to be a positive relation between safety factor and reliability. The reliability of a pillar increases with pillar width but decreases with depth of cover, pillar height and entry width. The reliability analysis also confirms that M-M strength formula has a better distinction between the stable and failed pillar cases.展开更多
In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simpl...In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simplified analysis model under 3D condition was put forward based on identification and division of slope units,as well as modification of sliding direction of each column.The result shows that explicit solution of infiltration depth is of good precision;for the given model,safety factors without taking seepage force into account are 1.82-2.94 times higher;the stagnation point of slope angle is located approximately in the range of(45°,50°);the safety factor changes insignificantly when wetting front is deeper than 2 m;when matric suction changes in the specified range,the maximum variations of safety factor are less than 0.5,which proves that matric suction plays an insignificant role in maintaining slope stability compared to the slope angle and infiltration depth.Incorporated with geographic information system,a practical application of regional slope stability assessment verifies the applicability of the proposed method.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
Luxury products, household appliances, cosmetics and products for the general public all use the techniques of sensory marketing in the very first phases of conception to specify or give a distinct character to the wa...Luxury products, household appliances, cosmetics and products for the general public all use the techniques of sensory marketing in the very first phases of conception to specify or give a distinct character to the way they are perceived. Creating the visio-tactile qualities of a mobile phone or dashboard, designing the acoustics used in a lipstick tube closure: these considerations offer industry a way of managing and mastering the sensorial identity which will set their products apart from those of their competitors. Sensory marketing is based upon the objective definition, the analysis and the mastering of the qualitative characteristics of the object to be conceived.展开更多
As a novel heart rate lowing agent, ivabradine can reduce the heart rate by inhibiting the If (pacemaker) current in the sinoatrial node without affecting blood pressure or left ventricular systolic function. Howeve...As a novel heart rate lowing agent, ivabradine can reduce the heart rate by inhibiting the If (pacemaker) current in the sinoatrial node without affecting blood pressure or left ventricular systolic function. However, the safety of ivabradine remains controversial. In the present work, we aimed to assess any risk of cardiovascular mortality, bradycardia, phosphenes and atrial fibrillation associated with the ivabradine administration by recta-analysis. Studies were retrieved from PubMed, EMBASE, MEDLINE, Web of Science, Cochrane, www.clinicaltrials.gov web site and related conferences. Randomized controlled trials comparing ivabradine with comparators were identified and analyzed. Two reviewers independently extracted relevant information from the eligible trials and processed the data. This recta-analysis was performed by using Review Manager (5.3) and Stata (14.1) software. Moreover, sensitivity analysis and publication bias of the included studies were evaluated. A total of 12 randomized controlled trials meeting the inclusion criteria were included. Results of the meta-analysis revealed that there was no significant difference between ivabradine group and control groups in cardiovascular mortality (RR = 0.97, 95% CI: 0.89-1.06, P = 0.49). While the administration of ivabradine was associated with a significant increase in the incidence of bradycardia (RR = 3.90, 95% CI: 2.47-6.17, P〈0.00001) and phosphenes (RR = 4.95, 95% CI: 3.24-7.55, P〈0.00001) as well as atrial fibrillation (RR = 1.24, 95% CI: 1.07-1.43, P = 0.003). High quality of the included studies was confirmed by quality assessment. No publication bias was observed, and sensitivity analysis confirmed that the obtained results were stable. In conclusion, the meta-analysis proved that the use of ivabradine was associated with a significant increase in the risk of bradycardia, phosphenes and atrial fibrillation. Therefore, clinicians need to take these risks into account when using ivabradine in treatment.展开更多
基金Projects(51278382,51479050)supported by the National Natural Science Foundation of ChinaProject(2015CB057901)supported by the National Key Basic Research Program of China+3 种基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2014B06814)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(B13024)supported by the"111"ProjectProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earthrock Dam of the Ministry of Water Resources,China
文摘Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.
基金supported in part by National Science Foundation of China (Contract NO. 41030742)Guangxi Science Foundation and the Program for Science & Technology of Henan Province in China (Grant No. 142300410200)
文摘traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.
文摘Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.
基金Project(CYB14010)supported by Chongqing Graduate Student Research Innovation Project,ChinaProject(51405209)supported by the National Natural Science Foundation of China
文摘Heliostats are sensitive to the wind load, thus as a key indicator, the study on the static and dynamic stability bearing capacity for heliostats is very important. In this work, a numerical wind tunnel was established to calculate the wind load coefficients in various survival stow positions. In order to explore the best survival stow position for the heliostat under the strong wind, eigenvalue buckling analysis method was introduced to predict the critical wind load theoretically. Considering the impact of the nonlinearity and initial geometrical imperfection, the nonlinear post-buckling behaviors of the heliostat were investigated by load-displacement curves in the full equilibrium process. Eventually, combining B-R criterion with equivalent displacement principle the dynamic critical wind speed and load amplitude coefficient were evaluated. The results show that the determination for the best survival stow position is too hasty just by the wind load coefficients. The geometric nonlinearity has a great effect on the stability bearing capacity of the heliostat, while the effects of the material nonlinearity and initial geometrical imperfection are relatively small. And the heliostat is insensitive to the initial geometrical imperfection. In addition, the heliostat has the highest safety factor for wind-resistant performance in the stow position of 90-90 which can be taken as the best survival stow position. In this case, the extreme survival wind speeds for the static and dynamic stability are 150 m/s and 36 m/s, respectively.
基金Project(51479097)supported by the National Natural Science Foundation of ChinaProject(2013-KY-2)supported by State Key Laboratory of Hydroscience and Hydraulic Engineering,China
文摘The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.
基金Project(11102218) supported by the National Natural Science Foundation of China
文摘The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.
基金supported by the National Natural Science Foundation of General Programs of China (Nos. 51574244, 51674264 and 51674243)
文摘A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability assessment of the engineering design. In underground coal mining applications such as pillar design,however, the inputs of pillar design are variables. This is widely overlooked in the deterministic approach. A probabilistic approach assessing the probability of failure or reliability of a system might be an alternative to the conventional quantitative methodology. This approach can incorporate the degree of uncertainty and deviations of variables and provide more versatile and reliable results. In this research, the reliability of case histories from stable and failed pillars of South Africa presented by Merwe and Mathey is examed. The updated Salamon and Munro strength formula(S-M formula) and Merwe and Mathey strength formula(M-M formula) are evaluated through a probabilistic approach. It is concluded that stable pillar cases have a reliability value greater than 0.83 while the reliability value of failed pillar cases are slightly larger than 0.50. There seems to be a positive relation between safety factor and reliability. The reliability of a pillar increases with pillar width but decreases with depth of cover, pillar height and entry width. The reliability analysis also confirms that M-M strength formula has a better distinction between the stable and failed pillar cases.
基金Project(kfj110207) supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport,China
文摘In order to establish a rapid method for regional slope stability analysis under rainfall,matric suction and seepage force were taken into account after obtaining explicit solution of infiltration depth.Moreover,simplified analysis model under 3D condition was put forward based on identification and division of slope units,as well as modification of sliding direction of each column.The result shows that explicit solution of infiltration depth is of good precision;for the given model,safety factors without taking seepage force into account are 1.82-2.94 times higher;the stagnation point of slope angle is located approximately in the range of(45°,50°);the safety factor changes insignificantly when wetting front is deeper than 2 m;when matric suction changes in the specified range,the maximum variations of safety factor are less than 0.5,which proves that matric suction plays an insignificant role in maintaining slope stability compared to the slope angle and infiltration depth.Incorporated with geographic information system,a practical application of regional slope stability assessment verifies the applicability of the proposed method.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
文摘Luxury products, household appliances, cosmetics and products for the general public all use the techniques of sensory marketing in the very first phases of conception to specify or give a distinct character to the way they are perceived. Creating the visio-tactile qualities of a mobile phone or dashboard, designing the acoustics used in a lipstick tube closure: these considerations offer industry a way of managing and mastering the sensorial identity which will set their products apart from those of their competitors. Sensory marketing is based upon the objective definition, the analysis and the mastering of the qualitative characteristics of the object to be conceived.
文摘As a novel heart rate lowing agent, ivabradine can reduce the heart rate by inhibiting the If (pacemaker) current in the sinoatrial node without affecting blood pressure or left ventricular systolic function. However, the safety of ivabradine remains controversial. In the present work, we aimed to assess any risk of cardiovascular mortality, bradycardia, phosphenes and atrial fibrillation associated with the ivabradine administration by recta-analysis. Studies were retrieved from PubMed, EMBASE, MEDLINE, Web of Science, Cochrane, www.clinicaltrials.gov web site and related conferences. Randomized controlled trials comparing ivabradine with comparators were identified and analyzed. Two reviewers independently extracted relevant information from the eligible trials and processed the data. This recta-analysis was performed by using Review Manager (5.3) and Stata (14.1) software. Moreover, sensitivity analysis and publication bias of the included studies were evaluated. A total of 12 randomized controlled trials meeting the inclusion criteria were included. Results of the meta-analysis revealed that there was no significant difference between ivabradine group and control groups in cardiovascular mortality (RR = 0.97, 95% CI: 0.89-1.06, P = 0.49). While the administration of ivabradine was associated with a significant increase in the incidence of bradycardia (RR = 3.90, 95% CI: 2.47-6.17, P〈0.00001) and phosphenes (RR = 4.95, 95% CI: 3.24-7.55, P〈0.00001) as well as atrial fibrillation (RR = 1.24, 95% CI: 1.07-1.43, P = 0.003). High quality of the included studies was confirmed by quality assessment. No publication bias was observed, and sensitivity analysis confirmed that the obtained results were stable. In conclusion, the meta-analysis proved that the use of ivabradine was associated with a significant increase in the risk of bradycardia, phosphenes and atrial fibrillation. Therefore, clinicians need to take these risks into account when using ivabradine in treatment.