The soil masses of slopes were assumed to follow a nonlinear failure criterion and a nonassociated flow rule.The stability factors of slopes were calculated using vertical slice method based on limit analysis.The pote...The soil masses of slopes were assumed to follow a nonlinear failure criterion and a nonassociated flow rule.The stability factors of slopes were calculated using vertical slice method based on limit analysis.The potential sliding mass was divided into a series of vertical slices as well as the traditional slice technique.Equating the external work rate to the internal energy dissipation,the optimum solutions to stability factors were determined by the nonlinear programming algorithm.From the numerical results,it is found that the present solutions agree well with previous results when the nonlinear criterion reduces to the linear criterion,and the nonassociated flow rule reduces to the associated flow rule.The stability factors decrease by 39.7%with nonlinear parameter varying from 1.0 to 3.0.Dilation and nonlinearity have significant effects on the slope stability factors.展开更多
In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency(DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we pr...In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency(DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we propose different approaches for the Rough-Terrain task, such as enlarged foot pedals and a transformation into quadruped walking. We also introduce a new gait for humanoid robot locomotion to improve stability performance, called the Ski-Type gait. We analyze the stability performance of this gait and use the stability margin to choose between two candidate step sequences, Crawl-1 and Crawl-2. Next, we perform a force/torque analysis for the redundant closedchain system in the Ski-Type gait, and determine the joint torques by minimizing the total energy consumption. Based on the stability and force/torque analysis, we design a cane length to support a feasible and stable Crawl-2 gait on the HUBO2 humanoid robot platform. Finally, we compare our experimental results with biped walking to validate the SkiType gait. We also present our team performance in the trials of the Robotics Challenge.展开更多
The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was const...The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.展开更多
This paper presents an optimal trajectory planning method of the dual arm manipulator using Dual Arm Manipulability Measure (DAMM). When the manipulator carries an object from a certain position to the destination, ...This paper presents an optimal trajectory planning method of the dual arm manipulator using Dual Arm Manipulability Measure (DAMM). When the manipulator carries an object from a certain position to the destination, various trajectory candidates could be conskied. TO select the optimal trajectacy from the several candidates, energy, time, and the length of the tmjecttay could be utilized. In order to quantify the carrying effidency of dual-arms, DAMM has been defined and applied for the decision of the optimal path. DAMM is defined as the interaction of the manipulability ellipsoids of the dualarras, while the manipulability measure irdicates the relationship between the joint velocity and the Cartesian velocity for each ann. The cast function for achieving the optimal path is defined as the Summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-ann robot with distributed controllers for synchronization control has been developed and used for the experiments.展开更多
A series of triaxial laboratory experiments are performed on thick-walled hollow cylindrical samples of boom clay.The aim of this testing program is to better understand the anisotropic deformation during the excavati...A series of triaxial laboratory experiments are performed on thick-walled hollow cylindrical samples of boom clay.The aim of this testing program is to better understand the anisotropic deformation during the excavation.The testing conditions are similar to those to be experienced by host rocks around disposal galleries for radioactive waste.X-ray computed tomography is performed at different steps for each test with the samples remaining inside the loading cell.Initial analysis of the tomography images allows of the observation of the deformation of the central hole.In addition,particles manual tracking and 3D volumetric digital image correlation processing methods are considered being used to analyze the particles displacements and the boundary deformation of the sample quantitatively.An unsymmetrical damaged zone is induced around the hole,with a reverse deformation trend being found at the boundary after unloading,which indicates that the significant anisotropic deformation of boom clay can be induced by mechanical unloading.展开更多
We propose and analyze mathematical models to study the dynamics of smoking behavior under the influence of educational programs and also individual's determination to quit smoking. We establish the positivity and bo...We propose and analyze mathematical models to study the dynamics of smoking behavior under the influence of educational programs and also individual's determination to quit smoking. We establish the positivity and boundedness of the solutions in a biologically feasible region. A threshold value responsible for persistence of smoking is obtained and stability analysis on models is performed. We find that determination alone is not enough to eradicate smoking but it can reduce the prevalence of smoker population. Whereas the increase in education can possibly eradicate it. We performed numerical simulation for representative set of parameters to verify and discuss results obtained analytically.展开更多
基金Project(200550)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(200631878557)supported by West Traffic of Science and Technology of China
文摘The soil masses of slopes were assumed to follow a nonlinear failure criterion and a nonassociated flow rule.The stability factors of slopes were calculated using vertical slice method based on limit analysis.The potential sliding mass was divided into a series of vertical slices as well as the traditional slice technique.Equating the external work rate to the internal energy dissipation,the optimum solutions to stability factors were determined by the nonlinear programming algorithm.From the numerical results,it is found that the present solutions agree well with previous results when the nonlinear criterion reduces to the linear criterion,and the nonassociated flow rule reduces to the associated flow rule.The stability factors decrease by 39.7%with nonlinear parameter varying from 1.0 to 3.0.Dilation and nonlinearity have significant effects on the slope stability factors.
文摘In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency(DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we propose different approaches for the Rough-Terrain task, such as enlarged foot pedals and a transformation into quadruped walking. We also introduce a new gait for humanoid robot locomotion to improve stability performance, called the Ski-Type gait. We analyze the stability performance of this gait and use the stability margin to choose between two candidate step sequences, Crawl-1 and Crawl-2. Next, we perform a force/torque analysis for the redundant closedchain system in the Ski-Type gait, and determine the joint torques by minimizing the total energy consumption. Based on the stability and force/torque analysis, we design a cane length to support a feasible and stable Crawl-2 gait on the HUBO2 humanoid robot platform. Finally, we compare our experimental results with biped walking to validate the SkiType gait. We also present our team performance in the trials of the Robotics Challenge.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51178468)supported by the National Natural Science Foundation of China
文摘The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.
基金supported bythe MKE(The Ministry of Knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(NIPA-2010-C1090-1021-0010)
文摘This paper presents an optimal trajectory planning method of the dual arm manipulator using Dual Arm Manipulability Measure (DAMM). When the manipulator carries an object from a certain position to the destination, various trajectory candidates could be conskied. TO select the optimal trajectacy from the several candidates, energy, time, and the length of the tmjecttay could be utilized. In order to quantify the carrying effidency of dual-arms, DAMM has been defined and applied for the decision of the optimal path. DAMM is defined as the interaction of the manipulability ellipsoids of the dualarras, while the manipulability measure irdicates the relationship between the joint velocity and the Cartesian velocity for each ann. The cast function for achieving the optimal path is defined as the Summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-ann robot with distributed controllers for synchronization control has been developed and used for the experiments.
基金supported by Fundamental Research Funds for the Central Universities (No.FRF-TP-14-033A1)TIMODAZ project as part of the sixth EURATOM framework programme for nuclear research and training activities (2002–2006)The Department of Diagnostic and Interventional Radiology of the CHUV and the collaboration with Laboratoire 3S-R,Grenoble are gratefully acknowledged
文摘A series of triaxial laboratory experiments are performed on thick-walled hollow cylindrical samples of boom clay.The aim of this testing program is to better understand the anisotropic deformation during the excavation.The testing conditions are similar to those to be experienced by host rocks around disposal galleries for radioactive waste.X-ray computed tomography is performed at different steps for each test with the samples remaining inside the loading cell.Initial analysis of the tomography images allows of the observation of the deformation of the central hole.In addition,particles manual tracking and 3D volumetric digital image correlation processing methods are considered being used to analyze the particles displacements and the boundary deformation of the sample quantitatively.An unsymmetrical damaged zone is induced around the hole,with a reverse deformation trend being found at the boundary after unloading,which indicates that the significant anisotropic deformation of boom clay can be induced by mechanical unloading.
文摘We propose and analyze mathematical models to study the dynamics of smoking behavior under the influence of educational programs and also individual's determination to quit smoking. We establish the positivity and boundedness of the solutions in a biologically feasible region. A threshold value responsible for persistence of smoking is obtained and stability analysis on models is performed. We find that determination alone is not enough to eradicate smoking but it can reduce the prevalence of smoker population. Whereas the increase in education can possibly eradicate it. We performed numerical simulation for representative set of parameters to verify and discuss results obtained analytically.