期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多模型的参数空间预测推断
1
作者 陈学前 沈展鹏 +1 位作者 刘信恩 何琴淑 《力学与实践》 北大核心 2015年第4期503-507,共5页
当建立多个模型对工程结构进行数值仿真时,为了得到更可靠的预测结果,需要综合考虑模型选择不确定性和模型形式不确定性对预测结果的影响.联合贝叶斯方法与实验数据计算不同模型的可信度,采用调节因子方法传播模型选择不确定性得到系统... 当建立多个模型对工程结构进行数值仿真时,为了得到更可靠的预测结果,需要综合考虑模型选择不确定性和模型形式不确定性对预测结果的影响.联合贝叶斯方法与实验数据计算不同模型的可信度,采用调节因子方法传播模型选择不确定性得到系统响应置信区间,并叠加模型形式不确定性的影响获得综合模型计算结果的置信区间,再通过插值得到关心量在预测点的置信区间.最后通过某飞行器气动力系数的预测推断检验了该方法的可行性. 展开更多
关键词 模型可信度 贝叶斯理论 调节因子法 模型选择不确定性 模型形式不确定性
下载PDF
金融素养对家庭商业保险参与的影响研究
2
作者 田秀雅 刘阳 《现代营销(下)》 2022年第8期69-71,共3页
本文通过跨期消费决策模型推导金融素养对家庭商业保险参与的影响,并基于中国家庭金融调查四期面板数据,采用定性选择模型和中介效应模型,探究金融素养对家庭商业保险参与广度和深度的影响及其机制。研究发现:金融素养对家庭商业保险参... 本文通过跨期消费决策模型推导金融素养对家庭商业保险参与的影响,并基于中国家庭金融调查四期面板数据,采用定性选择模型和中介效应模型,探究金融素养对家庭商业保险参与广度和深度的影响及其机制。研究发现:金融素养对家庭商业保险参与的广度和深度都有显著正向影响,且该影响在城镇家庭中更加明显;户主教育水平、健康状况、家庭人口规模、总资产和总负债,对家庭商业保险参与起到一定的促进效果;家庭总收入是金融素养影响家庭商业保险参与的重要渠道。 展开更多
关键词 金融素养 商业保险 跨期消费决策模型 定性选择模型 中介效应模型
下载PDF
Dynamic Portfolio Choice under Uncertainty about Asset Return Model
3
作者 何朝林 孟卫东 《Journal of Donghua University(English Edition)》 EI CAS 2009年第6期645-650,共6页
The effect of uncertainty about stochastic diffusion model on dynamic portfolio choice of an investor who maximizes utility of terminal portfolio wealth was studied.It applied stochastic control method to obtain the c... The effect of uncertainty about stochastic diffusion model on dynamic portfolio choice of an investor who maximizes utility of terminal portfolio wealth was studied.It applied stochastic control method to obtain the closed-form solution of optimal dynamic portfolio,and used the Bayesian rule to estimate the model parameters to do an empirical study on two different samples of Shanghai Exchange Composite Index.Results show,model uncertainty results in positive or negative hedging demand of portfolio,which depends on investor's attitude toward risk;the effect of model uncertainty is more significant with the increasing of investment horizon,the decreasing of investor's risk-aversion degree,and the decreasing of information;predictability of risky asset return increases its allocation in portfolio,at the same time,the effect of model uncertainty also strengthens. 展开更多
关键词 dynamic portfolio model uncertainty estimation risk Bayesian analysis
下载PDF
FREQUENTIST MODEL AVERAGING ESTIMATION:A REVIEW 被引量:16
4
作者 Haiying WANG Xinyu ZHANG Guohua ZOU Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China. 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第4期732-748,共17页
In applications, the traditional estimation procedure generally begins with model selection.Once a specific model is selected, subsequent estimation is conducted under the selected model withoutconsideration of the un... In applications, the traditional estimation procedure generally begins with model selection.Once a specific model is selected, subsequent estimation is conducted under the selected model withoutconsideration of the uncertainty from the selection process. This often leads to the underreportingof variability and too optimistic confidence sets. Model averaging estimation is an alternative to thisprocedure, which incorporates model uncertainty into the estimation process. In recent years, therehas been a rising interest in model averaging from the frequentist perspective, and some importantprogresses have been made. In this paper, the theory and methods on frequentist model averagingestimation are surveyed. Some future research topics are also discussed. 展开更多
关键词 Adaptive regression asymptotic theory frequentist model averaging model selection optimality.
原文传递
TIME SERIES FORECASTING WITH MULTIPLE CANDIDATE MODELS:SELECTING OR COMBINING? 被引量:5
5
作者 YULean WANGShouyang +1 位作者 K.K.Lai Y.Nakamori 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2005年第1期1-18,共18页
Various mathematical models have been commonly used in time series analysis and forecasting. In these processes, academic researchers and business practitioners often come up against two important problems. One is whe... Various mathematical models have been commonly used in time series analysis and forecasting. In these processes, academic researchers and business practitioners often come up against two important problems. One is whether to select an appropriate modeling approach for prediction purposes or to combine these different individual approaches into a single forecast for the different/dissimilar modeling approaches. Another is whether to select the best candidate model for forecasting or to mix the various candidate models with different parameters into a new forecast for the same/similar modeling approaches. In this study, we propose a set of computational procedures to solve the above two issues via two judgmental criteria. Meanwhile, in view of the problems presented in the literature, a novel modeling technique is also proposed to overcome the drawbacks of existing combined forecasting methods. To verify the efficiency and reliability of the proposed procedure and modeling technique, the simulations and real data examples are conducted in this study.The results obtained reveal that the proposed procedure and modeling technique can be used as a feasible solution for time series forecasting with multiple candidate models. 展开更多
关键词 time series forecasting model selection STABILITY ROBUSTNESS combiningforecasts
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部