期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
定时间步长变坐标步长差分求解单相Stefan问题 被引量:1
1
作者 吴兆春 《计算物理》 CSCD 北大核心 2003年第6期521-524,共4页
对单相Stefan问题提出了一种定时间步长、变坐标步长的差分求解方法.在固定时间步长内,以计算得到的移动界面位置作为网格节点的坐标,前后界面位置之差为空间步长,逐步地自动形成网格的划分,计算这些节点处的温度,从而获得下一时刻的移... 对单相Stefan问题提出了一种定时间步长、变坐标步长的差分求解方法.在固定时间步长内,以计算得到的移动界面位置作为网格节点的坐标,前后界面位置之差为空间步长,逐步地自动形成网格的划分,计算这些节点处的温度,从而获得下一时刻的移动界面的位置. 展开更多
关键词 STEFAN问题 定时间步长 变坐标步长 差分求解法 节点温度 传热学 温度场分布
下载PDF
电站烟囱混凝土硫酸腐蚀的数值模拟 被引量:5
2
作者 唐志永 金保升 +1 位作者 孙克勤 仲兆平 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第5期757-760,共4页
研究了电站烟囱C30混凝土在80℃、质量分数为15%硫酸溶液浸泡条件下的腐蚀规律,根据Fick扩散方程和反应速率方程,提出一个简化的移动边界腐蚀模型.采用定时间步长和变坐标步长的差分求解方法,对移动边界腐蚀模型进行求解,并采用相应的... 研究了电站烟囱C30混凝土在80℃、质量分数为15%硫酸溶液浸泡条件下的腐蚀规律,根据Fick扩散方程和反应速率方程,提出一个简化的移动边界腐蚀模型.采用定时间步长和变坐标步长的差分求解方法,对移动边界腐蚀模型进行求解,并采用相应的人工腐蚀实验来对模型进行验证.计算结果表明,随着时间的推移,在固定的时间步长内移动界面的位移变缓,腐蚀深度随时间的延续而增加,符合腐蚀的变化规律.计算结果与实验数据有较好的吻合性,该模型可以用于混凝土在硫酸腐蚀下腐蚀速度的预测,指导实际的工程设计. 展开更多
关键词 混凝土 硫酸 腐蚀 定时间步长和变坐标步长的差分求解方法
下载PDF
ALMOST SURE AND MOMENT EXPONENTIAL STABILITY OF PREDICTOR-CORRECTOR METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS 被引量:4
3
作者 Yuanling NIU Chengjian ZHANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第4期736-743,共8页
This paper deals with almost sure and moment exponential stability of a class of predictor- corrector methods applied to the stochastic differential equations of Ito-type. Stability criteria for this type of methods a... This paper deals with almost sure and moment exponential stability of a class of predictor- corrector methods applied to the stochastic differential equations of Ito-type. Stability criteria for this type of methods are derived. The methods are shown to maintain almost sure and moment exponential stability for all sufficiently small timesteps under appropriate conditions. A numerical experiment further testifies these theoretical results. 展开更多
关键词 Almost sure stability moment exponential stability numerical experiment stochastic differential equations.
原文传递
An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation 被引量:7
4
作者 LI Xiao QIAO ZhongHua ZHANG Hui 《Science China Mathematics》 SCIE CSCD 2016年第9期1815-1834,共20页
In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the n... In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term. 展开更多
关键词 Cahn-Hilliard equation stochastic term energy stability convex splitting adaptive time stepping
原文传递
Stability and convergence of the variable directions difference scheme for one nonlinear two-dimensional model 被引量:1
5
作者 Temur Jangveladze Zurab Kiguradze +1 位作者 Mikheil Gagoshidze Maia Nikolishvili 《International Journal of Biomathematics》 2015年第5期31-51,共21页
The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is construc... The system of two-dimensional nonlinear partial differential equations is considered. This system describes the vein formation in meristematic tissues of young leaves. Variable directions difference scheme is constructed and investigated. Absolute stability regarding space and time steps of scheme is shown. The convergence statement for the constructed scheme is proved. Rate of convergence is given. Various numerical experiments are carried out and results of some of them are considered in this paper. Comparison of numerical experiments with the results of the theoretical investigation is given too. 展开更多
关键词 Variable directions difference scheme nonlinear partial differential equations stability CONVERGENCE vein formation.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部