The threat of malware in wireless sensor network has stimulated some activities to model and analyze the malware prevalence.To understand the dynamics of malware propagation in wireless sensor network,we propose a nov...The threat of malware in wireless sensor network has stimulated some activities to model and analyze the malware prevalence.To understand the dynamics of malware propagation in wireless sensor network,we propose a novel epidemic model named as e-SEIR(susceptible-exposed-infectious-recovered)model,which is a set of delayed differential equations,in this paper.The model has taken into account the following two factors:1 Multi-state antivirus measures;2 Temporary immune period.Then,the stability and Hopf bifurcation at the equilibria of linearized model are carefully analyzed by considering the distribution of eigenvalues of characteristic equations.Both mathematical analysis and numerical simulations show that the dynamical features of the proposed model rely on the basic reproduction number R0 and time delayτ.This novel model can help us to better understand and predict the propagation behaviors of malware in wireless sensor networks.展开更多
For telecommunication operators, how to improve the utilization of bandwidth resources is always a problem which worthy of study, nowadays, this issue has become more and more important, since the traffic load burstin...For telecommunication operators, how to improve the utilization of bandwidth resources is always a problem which worthy of study, nowadays, this issue has become more and more important, since the traffic load bursting in the mobile Internet. So the key to solving this problem is that we need to find a kind of traffic model to predict the traffic load that users need. According to the predicted traffic load to allocate bandwidth to each base station dynamically.But the traffic consumption behavior of a single base station is random, it is difficult to predict[ 1 ]. For this reason, we based on reality that, when the user moves, it may get traffic load from different base stations, therefore, there will have some kind of relationship between those base stations.We use this relationship to establish a kind of Spatial Collaborative Network.consequently, we make use of stability algorithm to divided those base station cluster into different communities, According to the traffic load usage rules which these communities indicated to us, we get a traffic model.At the same time, we studied bow to use this traffic model in the future networks to dynamically allocate bandwidth resources, then we propose a new kind of EPS architecture based on SDN, on this platform, we can deploy our strategy through it's programmable interface.Finally, we designed an experiment to test the performance of our dynamic strategy, and the result shows that our method enables bandwidth utilization has been greatly improved.展开更多
This paper deals with the operation and performance of VSC (voltage source converter) based HVDC (high voltage direct current) interconnecting two extremely weak AC networks, the experience of Caprivilink project....This paper deals with the operation and performance of VSC (voltage source converter) based HVDC (high voltage direct current) interconnecting two extremely weak AC networks, the experience of Caprivilink project. It is shown in the paper that the HVDC converter automatically provides the supreme voltage and frequency stabilizing function when a critical situation is detected, no matter the disturbances appeared in sending end or receiving end AC networks. This supreme voltage and frequency stabilizing function makes it possible to avoid the blackout even if all the generators are tripped under an extra-ordinary worst contingency. By plots of recorded transients, the paper will show how the eventual blackouts are avoided.展开更多
In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperat...In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperature of the solid in the gas turbine engine. The fluid and solid areas are divided into the network comprised of branches and nodes, and the method solves transient mass, energy conservation equations at each node and momentum conservation equation at each branch by a newly deduced numerical method. With this method, to simulate complicated fluid and solid system in short time becomes possible. To verify the code developed, it has been applied to simulate a gas turbine model against the widely used commercial software Flowmaster. And the comparisons show that the two are in good agreement. Then the verified program is applied to the prediction of the characteristics of a designed turbine disk and air-cooling system associated to it, and useful information is obtained.展开更多
Software Defined Networking (SDN) is an emerging networking paradigm that assumes a logically centralized control plane separated from the data plane. Despite all its advantages, separating the control and data plan...Software Defined Networking (SDN) is an emerging networking paradigm that assumes a logically centralized control plane separated from the data plane. Despite all its advantages, separating the control and data planes introduces new challenges regarding resilient communications between the two. That is, disconnec- tions between switches and their controllers could result in substantial packet loss and performance degradation. This paper addresses this challenge by studying the issue of control traffic protection in SDNs with arbitrary numbers of controllers. Specifically, we propose a control traffic protection scheme that combines both local rerouting and constrained reverse path forwarding protections, through which switches can locally react to fail- ures and redirect the control traffic using standby backup forwarding options. Our goal is then to find a set of primary routes for control traffic, called protected control network, where as many switches as possible can benefit from the proposed protection scheme. We formulate the protected control network problem, prove its NP-hardness, and develop an algorithm that reconciles proteetability and performance (e.g., switch-to-control latency). Through extensive simulations based on real topologies, we show that our approach significantly im- proves protectability of control traffic. The results should help further the process of deploying SDN in real-world networks.展开更多
The author establishes the exact boundary observability of unsteady supercritical flows in a tree-like network of open canals with general topology. An implicit duality between the exact boundary controllability and t...The author establishes the exact boundary observability of unsteady supercritical flows in a tree-like network of open canals with general topology. An implicit duality between the exact boundary controllability and the exact boundary observability is also given for unsteady supercritical flows.展开更多
This paper is concerned with the stability of multiclass queueing networks of 2 stations and4 buffers under the longest queue first served discipline(LQFS).For this network,the service priority of a customer is determ...This paper is concerned with the stability of multiclass queueing networks of 2 stations and4 buffers under the longest queue first served discipline(LQFS).For this network,the service priority of a customer is determined by the length of the queue that customer resides in at that time.The main result includes two parts.Firstly,the corresponding fluid model is established,and then it is shown that the queueing networks under LQFS are stable whenever the traffic intensity is strictly less than one for each station.展开更多
基金National Natural Science Foundation of China(No.61379125)
文摘The threat of malware in wireless sensor network has stimulated some activities to model and analyze the malware prevalence.To understand the dynamics of malware propagation in wireless sensor network,we propose a novel epidemic model named as e-SEIR(susceptible-exposed-infectious-recovered)model,which is a set of delayed differential equations,in this paper.The model has taken into account the following two factors:1 Multi-state antivirus measures;2 Temporary immune period.Then,the stability and Hopf bifurcation at the equilibria of linearized model are carefully analyzed by considering the distribution of eigenvalues of characteristic equations.Both mathematical analysis and numerical simulations show that the dynamical features of the proposed model rely on the basic reproduction number R0 and time delayτ.This novel model can help us to better understand and predict the propagation behaviors of malware in wireless sensor networks.
基金part of the National Natural Science Foundation of China(NSFC)under Grant No.61371126the Independent Research Program of Central Universities under Grant No.2042014kf0256+2 种基金the National High Technology Research and Development Program of China(863 Program)under Grant No.2014AA01A707the National Key Basic Research Program of China(973 Program)under Grant No.2011CB707106Applied Basic Research Programs of Wuhan under Grant No.2014010101010026
文摘For telecommunication operators, how to improve the utilization of bandwidth resources is always a problem which worthy of study, nowadays, this issue has become more and more important, since the traffic load bursting in the mobile Internet. So the key to solving this problem is that we need to find a kind of traffic model to predict the traffic load that users need. According to the predicted traffic load to allocate bandwidth to each base station dynamically.But the traffic consumption behavior of a single base station is random, it is difficult to predict[ 1 ]. For this reason, we based on reality that, when the user moves, it may get traffic load from different base stations, therefore, there will have some kind of relationship between those base stations.We use this relationship to establish a kind of Spatial Collaborative Network.consequently, we make use of stability algorithm to divided those base station cluster into different communities, According to the traffic load usage rules which these communities indicated to us, we get a traffic model.At the same time, we studied bow to use this traffic model in the future networks to dynamically allocate bandwidth resources, then we propose a new kind of EPS architecture based on SDN, on this platform, we can deploy our strategy through it's programmable interface.Finally, we designed an experiment to test the performance of our dynamic strategy, and the result shows that our method enables bandwidth utilization has been greatly improved.
文摘This paper deals with the operation and performance of VSC (voltage source converter) based HVDC (high voltage direct current) interconnecting two extremely weak AC networks, the experience of Caprivilink project. It is shown in the paper that the HVDC converter automatically provides the supreme voltage and frequency stabilizing function when a critical situation is detected, no matter the disturbances appeared in sending end or receiving end AC networks. This supreme voltage and frequency stabilizing function makes it possible to avoid the blackout even if all the generators are tripped under an extra-ordinary worst contingency. By plots of recorded transients, the paper will show how the eventual blackouts are avoided.
文摘In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperature of the solid in the gas turbine engine. The fluid and solid areas are divided into the network comprised of branches and nodes, and the method solves transient mass, energy conservation equations at each node and momentum conservation equation at each branch by a newly deduced numerical method. With this method, to simulate complicated fluid and solid system in short time becomes possible. To verify the code developed, it has been applied to simulate a gas turbine model against the widely used commercial software Flowmaster. And the comparisons show that the two are in good agreement. Then the verified program is applied to the prediction of the characteristics of a designed turbine disk and air-cooling system associated to it, and useful information is obtained.
基金supported in part by National High-tech R&D Program of China(863 Program)(Grant Nos.2013AA0133012015AA016101)
文摘Software Defined Networking (SDN) is an emerging networking paradigm that assumes a logically centralized control plane separated from the data plane. Despite all its advantages, separating the control and data planes introduces new challenges regarding resilient communications between the two. That is, disconnec- tions between switches and their controllers could result in substantial packet loss and performance degradation. This paper addresses this challenge by studying the issue of control traffic protection in SDNs with arbitrary numbers of controllers. Specifically, we propose a control traffic protection scheme that combines both local rerouting and constrained reverse path forwarding protections, through which switches can locally react to fail- ures and redirect the control traffic using standby backup forwarding options. Our goal is then to find a set of primary routes for control traffic, called protected control network, where as many switches as possible can benefit from the proposed protection scheme. We formulate the protected control network problem, prove its NP-hardness, and develop an algorithm that reconciles proteetability and performance (e.g., switch-to-control latency). Through extensive simulations based on real topologies, we show that our approach significantly im- proves protectability of control traffic. The results should help further the process of deploying SDN in real-world networks.
文摘The author establishes the exact boundary observability of unsteady supercritical flows in a tree-like network of open canals with general topology. An implicit duality between the exact boundary controllability and the exact boundary observability is also given for unsteady supercritical flows.
基金supported by the National Natural Science Foundation of China under Grant No.11101050
文摘This paper is concerned with the stability of multiclass queueing networks of 2 stations and4 buffers under the longest queue first served discipline(LQFS).For this network,the service priority of a customer is determined by the length of the queue that customer resides in at that time.The main result includes two parts.Firstly,the corresponding fluid model is established,and then it is shown that the queueing networks under LQFS are stable whenever the traffic intensity is strictly less than one for each station.