A bi-harmonic stress function is constructed in this work. Ariy stress function methodology is used to obtain a set of analytical solutions for both ends fixed beams subjected to uniform load. The treatment for fixed-...A bi-harmonic stress function is constructed in this work. Ariy stress function methodology is used to obtain a set of analytical solutions for both ends fixed beams subjected to uniform load. The treatment for fixed-end boundary conditions is the same as that presented by Timoshenko and Goodier (1970). The solutions for propped cantilever beams and cantilever beams are also presented. All of the analytical plane-stress solutions can be obtained for a uniformly loaded isotropic beam with rectangular cross section under different types of classical boundary conditions.展开更多
In this paper, the boundedness and the stability of solutions for a class of fourth order nonlinear differential equations are studied by using the method of Liapunov function. The sufficient conditions which guarante...In this paper, the boundedness and the stability of solutions for a class of fourth order nonlinear differential equations are studied by using the method of Liapunov function. The sufficient conditions which guarantee the boundedness and stability of solutions are preasented.展开更多
The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm. To this end, an explic...The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm. To this end, an explicit Lyapunov function as a weighted and squared H2-norm of a small perturbation of the stationary solution is constructed. The authors show that by a suitable choice of the boundary feedback conditions, the H2- exponential stability of the stationary solution follows. Due to this fact, the system is stabilized over an infinite time interval. Furthermore, exponential estimates for the C norm are derived.展开更多
基金Project (No. 10472102) supported by the National Natural ScienceFoundation of China
文摘A bi-harmonic stress function is constructed in this work. Ariy stress function methodology is used to obtain a set of analytical solutions for both ends fixed beams subjected to uniform load. The treatment for fixed-end boundary conditions is the same as that presented by Timoshenko and Goodier (1970). The solutions for propped cantilever beams and cantilever beams are also presented. All of the analytical plane-stress solutions can be obtained for a uniformly loaded isotropic beam with rectangular cross section under different types of classical boundary conditions.
基金The Applied Foundation of the Education Department of Yunnan Province(0012226)
文摘In this paper, the boundedness and the stability of solutions for a class of fourth order nonlinear differential equations are studied by using the method of Liapunov function. The sufficient conditions which guarantee the boundedness and stability of solutions are preasented.
基金Project supported by the Initial Training Network "FIRST" of the Seventh Framework Programme of the European Community’s (No. 238702) the DFG-Priority Program 1253: Optimization with PDEs (No. GU 376/7-1)
文摘The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm. To this end, an explicit Lyapunov function as a weighted and squared H2-norm of a small perturbation of the stationary solution is constructed. The authors show that by a suitable choice of the boundary feedback conditions, the H2- exponential stability of the stationary solution follows. Due to this fact, the system is stabilized over an infinite time interval. Furthermore, exponential estimates for the C norm are derived.