期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
相参振荡器频率稳定度及定相精度的测量
1
作者 董鹏曙 李侠 宁永安 《现代雷达》 CSCD 北大核心 1998年第4期79-83,共5页
对信号源的频率稳定度进行了分析,在此基础上提出了一种同时测量相参振荡器频率稳定度与定相精度的方法。该方法具有结构简单、操作方便的优点,且所需设备少,可达到较高的测量精度。
关键词 相参振荡器 频率稳定度 定相精度
下载PDF
Land deformation monitoring in mining area with PPP-AR 被引量:5
2
作者 Hu Hong Gao Jingxiang Yao Yifei 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期207-212,共6页
The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phas... The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phase delay (CPD) was proposed for zero-differenced PPP ambiguity fixing and its corresponding formula derivation was given. The data processing results for I h at six IGS stations in China show that 93% of ambiguities can be fixed within 10 min and all ambiguities can be fixed within 15 min. After ambi- guity fixing, the positioning accuracy is improved by more than 85% in the E and N directions, with abso- lute positioning accuracy reaching millimeter level, and it was improved by 70% in the U direction, reaching centimeter level; the proposed zero-differenced ambiguity fixing model can effectively improve the convergence rate and positioning accuracy in PPP. Data monitoring continuously conducted for half a year at four COPS stations of Shanxi China Coal Pingshuo Group validated the feasibility of using PPP in mining area deformation monitoring. 展开更多
关键词 Deformation monitoring precise point positioning Ambiguity Combination phase delay (CPD) Ionosphere-free combination
下载PDF
Positioning Precision Analysis of GNSS Multi-frequency Carrier Phase Combinations 被引量:1
3
作者 WU Yue PAN Yong +1 位作者 FAN Yimin WANG Xiaojun 《Geo-Spatial Information Science》 2007年第4期245-249,共5页
GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free... GPS positioning precision is affected by various error sources, and traditional combinations of GPS carrier phase observations have their own limitations such as the wide-lane, the narrow-lane and the ionospheric-free combinations. To obtain the optimal positioning precision, a new linear combination method is addressed through the variance-covariance (VCV) of the GPS multi-frequency carrier phase combination equations, and the impact of the positioning precision is analyzed with the changing of the observation errors deduced by the law of error propagation. For the high precision positioning with only one carrier phase combination, the optimal combination method is deduced and further validated by an example of a baseline resolution with 60 km length. The result indicates that this method is the simplest, and the positioning precision is the best. Therefore, it is useful for long baseline quick positioning for different precision requirements in various distances. 展开更多
关键词 GPS multi-frequency combination propagation of errors positioning precision
下载PDF
Precise orbit determination of Beidou Satellites with precise positioning 被引量:64
4
作者 SHI Chuang ZHAO QiLe +6 位作者 LI Min TANG WeiMing HU ZhiGang LOU YiDong ZHANG HongPing NIU XiaoJi LIU JingNan 《Science China Earth Sciences》 SCIE EI CAS 2012年第7期1079-1086,共8页
Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-dev... Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-developed software Position And Navigation Data Analysis(PANDA) and Beidou Experimental Tracking Stations (BETS),which are built by Wuhan University,the study of Beidou precise orbit determination,static precise point positioning (PPP),and high precision relative positioning,and differential positioning are carried out comprehensively.Results show that the radial precision of the Beidou satellite orbit determination is better than 10 centimeters.The RMS of static PPP can reach several centimeters to even millimeters for baseline relative positioning.The precision of kinematic pseudo-range differential positioning and RTK mode positioning are 2-4 m and 5-10 cm respectively,which are close to the level of GPS precise positioning.Research in this paper verifies that,with support of ground reference station network,Beidou satellite navigation system can provide precise positioning from several decimeters to meters in the wide area and several centimeters in the regional area.These promising results would be helpful for the implementation and applications of Beidou satellite navigation system. 展开更多
关键词 compass/Beidou PANDA precise orbit determination (POD) Beidou difference
原文传递
HF SAR image cross-correlation technique for high accuracy orbit positioning
5
作者 KOBAYASHI Takao LEE SeungRyeol +1 位作者 KIM JungHo ONO Takayuki 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第5期978-985,共8页
A novel technique to determine the position of spacecraft orbits is proposed. The technique is based on the cross-correlation function of HF SAR images and is able to determine the relative position of orbits with an ... A novel technique to determine the position of spacecraft orbits is proposed. The technique is based on the cross-correlation function of HF SAR images and is able to determine the relative position of orbits with an accuracy of - λ/4 or better, where 2 is the wavelength of the HF radar pulse at its center frequency. The performance of the proposed technique was confirmed by simulation which was carried out under the condition of design facts of the SELENE LRS mission. The highly accurate orbit positioning enables precise superposition of HF SAR images so that the inherent mirror image ambiguity problem of HF SAR imaging is resolved to obtain a quality SAR image of the HF band. In addition ambitious 2D-SAR processing would be possible when the above accuracy is available. 展开更多
关键词 high accuracy orbit determination SAR LRS SELENE
原文传递
Precise determination of the α → α+β phase transformation temperature of Zr-1.0Sn-0.3Nb-0.3Fe alloy 被引量:1
6
作者 QIU RiSheng LUAN BaiFeng +2 位作者 CHAI LinJiang ZHANG XiYan LIU Qing 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第1期60-65,共6页
In this investigation,differential scanning calorimetry(DSC) and metallographic experiments were performed to study α→α +β phase transformation temperature in a Zr-1.0Sn-0.3Nb-0.3Fe alloy.The deconvolution and ex... In this investigation,differential scanning calorimetry(DSC) and metallographic experiments were performed to study α→α +β phase transformation temperature in a Zr-1.0Sn-0.3Nb-0.3Fe alloy.The deconvolution and extrapolation methods to determine the α→α+β phase transformation temperature in DSC experiment were appropriate for the Zr alloy.Moreover,precise determination of α→α+β phase transformation temperature was carried out by back-scattered electron imaging(BSEI) and electron back-scattered diffraction(EBSD) characterization techniques.The α→α+β phase transformation temperature of the Zr-1.0Sn-0.3Nb-0.3 Fe alloy was determined to be 765-770°C. 展开更多
关键词 phase transformation temperature DECONVOLUTION EXTRAPOLATION back-scattered electron imaging(BSEI) electron back-scattered diffraction(EBSD)
原文传递
A method of separating blended images in space debris observation
7
作者 SUN RongYu ZHAO ChangYin ZHANG YiPing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第10期1945-1951,共7页
Due to the relative movement between space debris and background stars,the blending of objects and stars is ineluctable through observation.It brings down position accuracy of objects and even makes the tracking break... Due to the relative movement between space debris and background stars,the blending of objects and stars is ineluctable through observation.It brings down position accuracy of objects and even makes the tracking break down in worse conditions.In view of the difference of geometry between stars and objects in space debris observation,a technique for separating blended objects based on mathematical morphology is presented.It's sufficiently flexible to be applied in image processing,and the blending images can be separated effectively with a high degree of centroid precision. 展开更多
关键词 space debris image processing mathematical morphology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部