In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using...Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.展开更多
The aeromechanical st ability for the coupled rotor/fuselage system of helicopters in forward flight i s investigated. The periodic time-varying equations of motion are developed thr ough building a new 24DOF coupled ...The aeromechanical st ability for the coupled rotor/fuselage system of helicopters in forward flight i s investigated. The periodic time-varying equations of motion are developed thr ough building a new 24DOF coupled rigid/elastic blended element based on the fle xible multibody system theory in this paper. It accounts for the effects of prec one, sweep, and the moderately large elastic deflections on the blade and elasti city of shaft and fuselage of the helicopter. The dynamic coupling between the r igid motion of blades about the flap, lag and pitch hinges of articulated rotor and moderately large elastic deflections are included. There is no restriction o n the rotation amplitudes of flap, lag and pitch in the formulation. The stabili ty of periodic solution is studied using the Floquet theory. The transition matr ix is calculated by the Newmark integration method. The aeromechanical stability of a new helicopter is studied. The results show that it is stable in the given forward flight. But the instability arises with the decrease of the bending and torsion stiffness of the shaft.展开更多
Electromagnetic and mechanical forces are main reasons of oscillations in hydro-generators.The oscillation is fairly complicated as to the coupling of them.Using the method of multiple scales in nonlinear oscillations...Electromagnetic and mechanical forces are main reasons of oscillations in hydro-generators.The oscillation is fairly complicated as to the coupling of them.Using the method of multiple scales in nonlinear oscillations,instabilities of hydro-generator rotors caused by the unbalanced magnetic pull,which comes from the eccentricity of the rotor,are discussed.Considering nonlinear properties of the unbalanced magnetic pull,the super-harmonic resonance phenomena are observed as the critical rotating speed of rotors is close to twice of the operating speed.This is verified by a model experiment,and should be considered during the design of hydro-generator rotors.展开更多
The preparation of a nonlinear directional coupler in polymer PMMA/DR1 film by photobleaching is studied. We find it easier to obtain a required coupling length by controlling photo bleaching time than by controlling ...The preparation of a nonlinear directional coupler in polymer PMMA/DR1 film by photobleaching is studied. We find it easier to obtain a required coupling length by controlling photo bleaching time than by controlling the dimension of the coupler. The transmittance of each arm is measured when the pulse input light energy changes in our experiment. The experimental results show that the coupling length will change with the intensity of input light due to optical nonlinearities of the polymer PMMA/DR1 at 1 064 nm.展开更多
The Schrodinger equation -△u+λ2u=|u|2q-2u has a unique positive radial solution Uλ, which decays exponentially at infinity. Hence it is reasonable that the Schrolinger system -△u1+u1=|u1|2q-1u1-εb(x)|u2...The Schrodinger equation -△u+λ2u=|u|2q-2u has a unique positive radial solution Uλ, which decays exponentially at infinity. Hence it is reasonable that the Schrolinger system -△u1+u1=|u1|2q-1u1-εb(x)|u2|1|u1|q-1u1,-△u2+u2=|u2|2q-2u2-εb(x)|u1|1|u2|q-1u2 has multiple-bump solutions which behave like Uλ in the neighborhood of some points. For u=(u1,u2)∈H1(R3)×H1(R3), a nonlinear functional Iε(u)=I1(u1)+I2(u2)-ε/q∫R3b(x)|u1|q|u2|qdx,is defined,where I1(u1)=1/2||u1||2-1/2q∫R3|u1|2qdx and I2(u2)=1/2||u2||2ω-1/2q∫R3|u2|2qdx. It is proved that the solutions of the system are the critical points of I,. Let Z be the smooth solution manifold of the unperturbed problem and TzZ is the tangent space. The critical point of I is rewritten as the form of z + w, where w ∈ (TzZ)⊥. Using some properties of Iε, it is proved that there exists a critical point of I, close to the form which is a multi-bump solution.展开更多
Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optica...Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.展开更多
The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same str...The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.展开更多
In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reducti...In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.展开更多
The determination of toxic metals in water using multiwalled carbon nanotubes (MWNTs) as a solid-phase extraction adsorbent prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS) has...The determination of toxic metals in water using multiwalled carbon nanotubes (MWNTs) as a solid-phase extraction adsorbent prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS) has been investigated. Standard addition method was applied for the calibration using aqueous solutions. Multiwalled carbon nanotubes (MWNTs) absorb these metals at pH 8.0, HNO3 of 1.0 mol-Ll is used for complete elusion of these metals from MWNTs. Previously investigated parameters have been applied for the determination of Pb, Cr, Ni and Mn in tap water samples. Fifteen tap water samples from different locations of Riyadh metropolitan area have been determined by ICP-MS after preconcentration with MWNTs.展开更多
There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyze...There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.展开更多
The infrared absorption spectra of the CO monomer isolated in solid N2 have been recorded at various temperatures between 4.5 and 30 K. The absorption features of the fundamen- tal stretching mode show its linewidth a...The infrared absorption spectra of the CO monomer isolated in solid N2 have been recorded at various temperatures between 4.5 and 30 K. The absorption features of the fundamen- tal stretching mode show its linewidth and matrix-induced frequency shift to be weakly temperature-dependent. As the temperature of the matrix was raised, an increase in the linewidth together with a redshift in the central frequency was observed. These observations were explained in terms of the quenching of the CO rotational states by the N2 matrix into closely-lying librational states. A quantitative model was then used to calculate the energy difference between these librational states. Results show that they can be thermally populated through the absorption of matrix phonons.展开更多
The northern Indian Ocean (NIO) experienced a decadal-scale persistent warming from 1950 to 2000, which has influenced both regional and global climate. Because the NIO is a region susceptible to aerosols emis- sion...The northern Indian Ocean (NIO) experienced a decadal-scale persistent warming from 1950 to 2000, which has influenced both regional and global climate. Because the NIO is a region susceptible to aerosols emis- sion changes, and there are still large uncertainties in the representation of the aerosol indirect effect (ALE) in CMIP5 (Coupled Model Intercomparison Project Phase 5) models, it is necessary to investigate the role of the AIE in the NIO warming simulated by these models. In this study, the authors select seven CMIP5 models with both the aerosol direct and indirect effects to investigate their performance in simulating the basin-wide decadal-scale NIO warming. The results show that the decreasing trend of the downwelling shortwave flux (FSDS) at the surface has the major damping effect on the SST increasing trend, which counteracts the warming effect of greenhouse gases (GHGs). The FSDS decreasing trend is mostly contrib- uted by the decreasing trend of cloudy-sky surface downwelling shortwave flux (FSDSCL), a metric used to measure the strength of the AIE, and partly by the clear-sky surface downwelling shortwave flux (FSDSC). Models with a relatively weaker AIE can simulate well the SST increasing trend, as compared to observation. In contrast, models with a relatively stronger AIE produce a much smaller magnitude of the increasing trend, indicat- ing that the strength of the AIE in these models may be overestimated in the NIO.展开更多
An inverse system method based optimal control strategy was proposed for the shunt hybrid active power filter (SHAPF) to enhance its harmonic elimination performance. Based on the inverse system method, the d-axis a...An inverse system method based optimal control strategy was proposed for the shunt hybrid active power filter (SHAPF) to enhance its harmonic elimination performance. Based on the inverse system method, the d-axis and q-axis current dynamics of the SHAPF system were decoupled and linearized into two pseudolinear subsystems. Then, an optimal feedback controUer was designed for the pseudolinear system, and the stability condition of the resulting zero dynamics was presented. Under the control strategy, the current dynamics can asymptotically converge to their reference states and the zero dynamics can be bounded. Simulation results show that the proposed control strategy is robust against load variations and system parameter mismatches, its steady-state performance is better than that of the traditional linear control strategy.展开更多
This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonli...This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equations of motion, including bending-bending and longitudinal-bending couplings for the risers are derived. The couplings cause mutual effects between the three independent directions in the riser's motions, and make it difficult to minimize its vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed boundary controllers can effectively reduce the riser's vibration. Stability analysis of the closed-loop system is performed using the Lyapunov direct method. Numerical simulations illustrate the results.展开更多
Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain ...Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain vibration test data in 36damage cases. A coupling neural network (NN) based on multi-sensor information fusion is proposed to achieve identification of damage occurrence, damage localization and damage quantification, respectively. First, wavelet packet transform (WPT) is used to extract features of vibration test data from structure with different damage extent. Then, data fusion is conducted by assembling feature vectors of different type sensors. Finally, three sets of coupling NN are constructed to implement decision fusion and damage identification. The results of experimental study proved the validity and feasibility of the proposed methodology.展开更多
The method of coupled mode is introduced for investigation of bi-static distant bottom reverberation of impulsive source in shallow water, which will not contradict with principle of reciprocity in all cases. And the ...The method of coupled mode is introduced for investigation of bi-static distant bottom reverberation of impulsive source in shallow water, which will not contradict with principle of reciprocity in all cases. And the method of multi-pole for directional source is also introduced. It shows that in case of layered medium, intensity of bi-static bottom reverberation will decease according to the cubic power of receiving time t, and the transverse spatial correlation of bottom reverberation is a little greater than longitudinal correlation for equal separation of receivers, and both vary in form with the receiving time.展开更多
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金The National Natural Science Foundation of China(No.40902076)the Natural Science Foundation of Jiangsu Province(No.BK20141224)
文摘Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.
文摘The aeromechanical st ability for the coupled rotor/fuselage system of helicopters in forward flight i s investigated. The periodic time-varying equations of motion are developed thr ough building a new 24DOF coupled rigid/elastic blended element based on the fle xible multibody system theory in this paper. It accounts for the effects of prec one, sweep, and the moderately large elastic deflections on the blade and elasti city of shaft and fuselage of the helicopter. The dynamic coupling between the r igid motion of blades about the flap, lag and pitch hinges of articulated rotor and moderately large elastic deflections are included. There is no restriction o n the rotation amplitudes of flap, lag and pitch in the formulation. The stabili ty of periodic solution is studied using the Floquet theory. The transition matr ix is calculated by the Newmark integration method. The aeromechanical stability of a new helicopter is studied. The results show that it is stable in the given forward flight. But the instability arises with the decrease of the bending and torsion stiffness of the shaft.
基金Sponsored by the National Natural Science Foundation of China(Grant No.59493700),Key Project of the National Tenth-Five Year Research Programme of China(Grant No.ZZ01-01-04-03).
文摘Electromagnetic and mechanical forces are main reasons of oscillations in hydro-generators.The oscillation is fairly complicated as to the coupling of them.Using the method of multiple scales in nonlinear oscillations,instabilities of hydro-generator rotors caused by the unbalanced magnetic pull,which comes from the eccentricity of the rotor,are discussed.Considering nonlinear properties of the unbalanced magnetic pull,the super-harmonic resonance phenomena are observed as the critical rotating speed of rotors is close to twice of the operating speed.This is verified by a model experiment,and should be considered during the design of hydro-generator rotors.
文摘The preparation of a nonlinear directional coupler in polymer PMMA/DR1 film by photobleaching is studied. We find it easier to obtain a required coupling length by controlling photo bleaching time than by controlling the dimension of the coupler. The transmittance of each arm is measured when the pulse input light energy changes in our experiment. The experimental results show that the coupling length will change with the intensity of input light due to optical nonlinearities of the polymer PMMA/DR1 at 1 064 nm.
基金The National Natural Science Foundation of China(No.11171063)the Natural Science Foundation of Jiangsu Province(No.BK2010404)
文摘The Schrodinger equation -△u+λ2u=|u|2q-2u has a unique positive radial solution Uλ, which decays exponentially at infinity. Hence it is reasonable that the Schrolinger system -△u1+u1=|u1|2q-1u1-εb(x)|u2|1|u1|q-1u1,-△u2+u2=|u2|2q-2u2-εb(x)|u1|1|u2|q-1u2 has multiple-bump solutions which behave like Uλ in the neighborhood of some points. For u=(u1,u2)∈H1(R3)×H1(R3), a nonlinear functional Iε(u)=I1(u1)+I2(u2)-ε/q∫R3b(x)|u1|q|u2|qdx,is defined,where I1(u1)=1/2||u1||2-1/2q∫R3|u1|2qdx and I2(u2)=1/2||u2||2ω-1/2q∫R3|u2|2qdx. It is proved that the solutions of the system are the critical points of I,. Let Z be the smooth solution manifold of the unperturbed problem and TzZ is the tangent space. The critical point of I is rewritten as the form of z + w, where w ∈ (TzZ)⊥. Using some properties of Iε, it is proved that there exists a critical point of I, close to the form which is a multi-bump solution.
基金Project(51475479) supported by the National Natural Science Foundation of ChinaProject(2017YFB1104800) supported by the National Key Research and Development Program of China+2 种基金Project(2016GK2098) supported by the Key Research and Development Program of Hunan Province,ChinaProject(ZZYJKT2017-07) supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(JMTZ201804) supported by the Key Laboratory for Precision&Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.
文摘The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.
基金Financial supports for this work, provided by the National Natural Science Foundation of China (No. 51274097)the Scientific Research Fund of Hunan Provincial Education Department of China (No. 13A020)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining, CUMT (No. 13KF03)
文摘In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.
文摘The determination of toxic metals in water using multiwalled carbon nanotubes (MWNTs) as a solid-phase extraction adsorbent prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS) has been investigated. Standard addition method was applied for the calibration using aqueous solutions. Multiwalled carbon nanotubes (MWNTs) absorb these metals at pH 8.0, HNO3 of 1.0 mol-Ll is used for complete elusion of these metals from MWNTs. Previously investigated parameters have been applied for the determination of Pb, Cr, Ni and Mn in tap water samples. Fifteen tap water samples from different locations of Riyadh metropolitan area have been determined by ICP-MS after preconcentration with MWNTs.
基金Project(2012BAK09B02-05)supported by the National"Twelfth Five"Science and Technology Support Program,ChinaProject(51274250)supported by the National Natural Science Foundation of China+2 种基金Project(2013zzts057)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(11KF02)supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine safety,CUMT,ChinaProject(2012M511417)supported by China Postdoctoral Science Foundation
文摘There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.
基金ACKNOWLEDGMENTS This work was supported by the Young International Scientist Fellowship from the Chinese Academy of Sciences, the National Natural Science Foundation (No.21225314 and No.11150110457), the National Basic Research Program of China (No.2010CB923300), and the Fundamental Research Funds for the Central Universities .
文摘The infrared absorption spectra of the CO monomer isolated in solid N2 have been recorded at various temperatures between 4.5 and 30 K. The absorption features of the fundamen- tal stretching mode show its linewidth and matrix-induced frequency shift to be weakly temperature-dependent. As the temperature of the matrix was raised, an increase in the linewidth together with a redshift in the central frequency was observed. These observations were explained in terms of the quenching of the CO rotational states by the N2 matrix into closely-lying librational states. A quantitative model was then used to calculate the energy difference between these librational states. Results show that they can be thermally populated through the absorption of matrix phonons.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110304)the National Basic Research Program of China (973 Project, Grant No. 2010CB951904)
文摘The northern Indian Ocean (NIO) experienced a decadal-scale persistent warming from 1950 to 2000, which has influenced both regional and global climate. Because the NIO is a region susceptible to aerosols emis- sion changes, and there are still large uncertainties in the representation of the aerosol indirect effect (ALE) in CMIP5 (Coupled Model Intercomparison Project Phase 5) models, it is necessary to investigate the role of the AIE in the NIO warming simulated by these models. In this study, the authors select seven CMIP5 models with both the aerosol direct and indirect effects to investigate their performance in simulating the basin-wide decadal-scale NIO warming. The results show that the decreasing trend of the downwelling shortwave flux (FSDS) at the surface has the major damping effect on the SST increasing trend, which counteracts the warming effect of greenhouse gases (GHGs). The FSDS decreasing trend is mostly contrib- uted by the decreasing trend of cloudy-sky surface downwelling shortwave flux (FSDSCL), a metric used to measure the strength of the AIE, and partly by the clear-sky surface downwelling shortwave flux (FSDSC). Models with a relatively weaker AIE can simulate well the SST increasing trend, as compared to observation. In contrast, models with a relatively stronger AIE produce a much smaller magnitude of the increasing trend, indicat- ing that the strength of the AIE in these models may be overestimated in the NIO.
基金Project(61174068)supported by the National Natural Science Foundation of China
文摘An inverse system method based optimal control strategy was proposed for the shunt hybrid active power filter (SHAPF) to enhance its harmonic elimination performance. Based on the inverse system method, the d-axis and q-axis current dynamics of the SHAPF system were decoupled and linearized into two pseudolinear subsystems. Then, an optimal feedback controUer was designed for the pseudolinear system, and the stability condition of the resulting zero dynamics was presented. Under the control strategy, the current dynamics can asymptotically converge to their reference states and the zero dynamics can be bounded. Simulation results show that the proposed control strategy is robust against load variations and system parameter mismatches, its steady-state performance is better than that of the traditional linear control strategy.
文摘This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in a three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equations of motion, including bending-bending and longitudinal-bending couplings for the risers are derived. The couplings cause mutual effects between the three independent directions in the riser's motions, and make it difficult to minimize its vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed boundary controllers can effectively reduce the riser's vibration. Stability analysis of the closed-loop system is performed using the Lyapunov direct method. Numerical simulations illustrate the results.
文摘Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain vibration test data in 36damage cases. A coupling neural network (NN) based on multi-sensor information fusion is proposed to achieve identification of damage occurrence, damage localization and damage quantification, respectively. First, wavelet packet transform (WPT) is used to extract features of vibration test data from structure with different damage extent. Then, data fusion is conducted by assembling feature vectors of different type sensors. Finally, three sets of coupling NN are constructed to implement decision fusion and damage identification. The results of experimental study proved the validity and feasibility of the proposed methodology.
文摘The method of coupled mode is introduced for investigation of bi-static distant bottom reverberation of impulsive source in shallow water, which will not contradict with principle of reciprocity in all cases. And the method of multi-pole for directional source is also introduced. It shows that in case of layered medium, intensity of bi-static bottom reverberation will decease according to the cubic power of receiving time t, and the transverse spatial correlation of bottom reverberation is a little greater than longitudinal correlation for equal separation of receivers, and both vary in form with the receiving time.