The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is t...The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.展开更多
Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation ...Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation of the rotor field. A new approach serves for rotor time constant on-line adaptation by setting the stator current to be zero for a short period. A smooth eorrector is designed to prevent ab- normal detection result from making adaptation. Impact of zero current duration on detection error and rotor speed is analyzed by experiments.展开更多
A method of unstructured dynamic overset grids is developed for the numerical simulation of helicopter unsteady rotorairframe aerodynamic interaction.For the effective treatment of the relative motion between the roto...A method of unstructured dynamic overset grids is developed for the numerical simulation of helicopter unsteady rotorairframe aerodynamic interaction.For the effective treatment of the relative motion between the rotor and the airframe,the domain of flowfield is divided into two overset subzones,namely,a rotational subzone containing the blades and a stationary subzone containing the airframe.The overset part of two subzones is used to convect the flow variables of the two zones.The Taylor series expansion is used to obtain a second-order spatial accuracy,and dual-time stepping is adopted to improve the solution accuracy.Mesh deformation from the blade motion in forward flight is treated by using a spring analogy.Validation is made by numerically simulating the flows around a wind tunnel configuration and comparing the predicted time-averaged and instantaneous inflow and airframe surface pressure distributions with the experimental data.It shows that the present method is efficient and robust for the prediction of complicated unsteady rotor-airframe aerodynamic interaction phenomena.展开更多
文摘The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.
基金Supported by the National Natural Science Foundation of China(No.51276016)the Fundamental Research Funds for the Central University(No.FRF-TP-12-059A)
文摘Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation of the rotor field. A new approach serves for rotor time constant on-line adaptation by setting the stator current to be zero for a short period. A smooth eorrector is designed to prevent ab- normal detection result from making adaptation. Impact of zero current duration on detection error and rotor speed is analyzed by experiments.
基金supported by the Basic Research Program of Northwestern Polytechnical University (Grant No. JC201219)the Postdoctoral Science Foundation of China (Grant No. 20100481368)
文摘A method of unstructured dynamic overset grids is developed for the numerical simulation of helicopter unsteady rotorairframe aerodynamic interaction.For the effective treatment of the relative motion between the rotor and the airframe,the domain of flowfield is divided into two overset subzones,namely,a rotational subzone containing the blades and a stationary subzone containing the airframe.The overset part of two subzones is used to convect the flow variables of the two zones.The Taylor series expansion is used to obtain a second-order spatial accuracy,and dual-time stepping is adopted to improve the solution accuracy.Mesh deformation from the blade motion in forward flight is treated by using a spring analogy.Validation is made by numerically simulating the flows around a wind tunnel configuration and comparing the predicted time-averaged and instantaneous inflow and airframe surface pressure distributions with the experimental data.It shows that the present method is efficient and robust for the prediction of complicated unsteady rotor-airframe aerodynamic interaction phenomena.