The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) charac...The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) characterization. Age hardening curves show an increase in precipitation kinetics with increasing ageing temperature. The results of TEM show that for the samples peak aged at 120 ~C, the amount of g' (A13Li), GP zones/0' (A12Cu) and Z (A15Cu6Li2) phases is obviously higher than that of T1 (A12CuLi) precipitates; while the samples peak aged at 160 and 200 ~C are usually dominated by T1 phase with a minor fraction of GP zones/0' and g', and the Z phase almost does not form. In addition, quantitative analysis on the T1 platelets demonstrates that the samples peak aged at 200 ~C have larger plate diameter and smaller area fraction of T1, as compared to the samples peak aged at 160 ~C. Correspondingly, the possible reasons for such phenomena are discussed.展开更多
基金Project(2016YFB0300901) supported by the National Key R&D Program of China Project(51421001) supported by the National Natural Science Foundation of China Project(2018CDJDCL0019) supported by the Fundamental Research Funds for the Central Universities, China
文摘The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) characterization. Age hardening curves show an increase in precipitation kinetics with increasing ageing temperature. The results of TEM show that for the samples peak aged at 120 ~C, the amount of g' (A13Li), GP zones/0' (A12Cu) and Z (A15Cu6Li2) phases is obviously higher than that of T1 (A12CuLi) precipitates; while the samples peak aged at 160 and 200 ~C are usually dominated by T1 phase with a minor fraction of GP zones/0' and g', and the Z phase almost does not form. In addition, quantitative analysis on the T1 platelets demonstrates that the samples peak aged at 200 ~C have larger plate diameter and smaller area fraction of T1, as compared to the samples peak aged at 160 ~C. Correspondingly, the possible reasons for such phenomena are discussed.