The quantitative structure-property relationship(QSPR) of anabolic androgenic steroids was studied on the half-wave reduction potential(E1/2) using quantum and physico-chemical molecular descriptors. The descriptors w...The quantitative structure-property relationship(QSPR) of anabolic androgenic steroids was studied on the half-wave reduction potential(E1/2) using quantum and physico-chemical molecular descriptors. The descriptors were calculated by semi-empirical calculations. Models were established using partial least square(PLS) regression and back-propagation artificial neural network(BP-ANN). The QSPR results indicate that the descriptors of these derivatives have significant relationship with half-wave reduction potential. The stability and prediction ability of these models were validated using leave-one-out cross-validation and external test set.展开更多
基金Project supported by the Postdoctoral Science Foundation of Central South University,ChinaProject(2015SK20823)supported by Science and Technology Project of Hunan Province,China+2 种基金Project(15A001)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(CX2015B372)supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject supported by Innovation Experiment Program for University Students of Changsha University of Science and Technology,China
文摘The quantitative structure-property relationship(QSPR) of anabolic androgenic steroids was studied on the half-wave reduction potential(E1/2) using quantum and physico-chemical molecular descriptors. The descriptors were calculated by semi-empirical calculations. Models were established using partial least square(PLS) regression and back-propagation artificial neural network(BP-ANN). The QSPR results indicate that the descriptors of these derivatives have significant relationship with half-wave reduction potential. The stability and prediction ability of these models were validated using leave-one-out cross-validation and external test set.