Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety...Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety IR1552 and an Al tolerant upland japonica rice variety Azucena, was used for mapping quantitative trait loci (QTLs) for Al tolerance. Three QTLs for relative root length (RRL) were detected on chromosome 1, 9, 12, respectively, and 1 QTL for root length under Al stress is identical on chromosome 1 after one week and two weeks stress. Comparison of QTLs on chromosome 1 from different studies indicated an identical interval between C86 and RZ801 with gene(s) for Al tolerance. This interval provides an important start point for isolating genes responsible for Al tolerance and understanding the genetic nature of Al tolerance in rice. Four Al induced ESTs located in this interval were screened by reverse Northern analysis and confirmed by Northern analysis. They would be candidate genes for the QTL.展开更多
Advances on methods for mapping quantitative trait loci (QTL) are firstly summarized. Then, some new methods, including mapping multiple QTL, fine mapping of QTL, and mapping QTL for dynamic traits, are mainly describ...Advances on methods for mapping quantitative trait loci (QTL) are firstly summarized. Then, some new methods, including mapping multiple QTL, fine mapping of QTL, and mapping QTL for dynamic traits, are mainly described. Finally, some future prospects are proposed, including how to dig novel genes in the germplasm resource, map expression QTL (eQTL) by the use of all markers, phenotypes and micro-array data, identify QTL using genetic mating designs and detect viability loci. The purpose is to direct plant geneticists to choose a suitable method in the inheritance analysis of quantitative trait and in search of novel genes in germplasm resource so that more potential genetic information can be uncovered.展开更多
基金Project (No. 30070070) supported by the National NaturalScience Foundation of China
文摘Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety IR1552 and an Al tolerant upland japonica rice variety Azucena, was used for mapping quantitative trait loci (QTLs) for Al tolerance. Three QTLs for relative root length (RRL) were detected on chromosome 1, 9, 12, respectively, and 1 QTL for root length under Al stress is identical on chromosome 1 after one week and two weeks stress. Comparison of QTLs on chromosome 1 from different studies indicated an identical interval between C86 and RZ801 with gene(s) for Al tolerance. This interval provides an important start point for isolating genes responsible for Al tolerance and understanding the genetic nature of Al tolerance in rice. Four Al induced ESTs located in this interval were screened by reverse Northern analysis and confirmed by Northern analysis. They would be candidate genes for the QTL.
基金This work was supported by the National Natural Science Foundation of China(Grant No.30470998)Jiangsu Natural Science Foundation(Grant No.BK2005087)+2 种基金Program for Changjiang Scholars and Innovative Research Team in University,Program for New Centary Excellent Talent in University(Grant No.NCET-05-0489)973 Program(Grant No.2006CB101708)the Scientific Research Foundation for the Returned 0versears Chinese Scholars,State Education and Personnel Ministry,and the Talented Foundation of Nanjing Agriculture University.
文摘Advances on methods for mapping quantitative trait loci (QTL) are firstly summarized. Then, some new methods, including mapping multiple QTL, fine mapping of QTL, and mapping QTL for dynamic traits, are mainly described. Finally, some future prospects are proposed, including how to dig novel genes in the germplasm resource, map expression QTL (eQTL) by the use of all markers, phenotypes and micro-array data, identify QTL using genetic mating designs and detect viability loci. The purpose is to direct plant geneticists to choose a suitable method in the inheritance analysis of quantitative trait and in search of novel genes in germplasm resource so that more potential genetic information can be uncovered.