Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose an operational ...Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose an operational framework to map urban land cover on the basis of Ziyuan-3 satellite images. Based on this framework, we produced the first high-resolution(2 m) urban land-cover map(Hi-ULCM) covering the 42 major cities of China. The overall accuracy of the Hi-ULCM dataset is 88.55%, of which 14 cities have an overall accuracy of over 90%. Most of the producer’s accuracies and user’s accuracies of the land-cover classes exceed 85%. We further conducted a landscape pattern analysis in the 42 cities based on Hi-ULCM. In terms of the comparison between the 42 cities in China, we found that the difference in the land-cover composition of urban areas is related to the climatic characteristics and urbanization levels, e.g., cities with warm climates generally have higher proportions of green spaces. It is also interesting to find that cities with higher urbanization levels are more habitable, in general. From the landscape viewpoint, the geometric complexity of the landscape increases with the urbanization level.Compared with the existing medium-resolution land-cover/use datasets(at a 30-m resolution), HiULCM represents a significant advance in accurately depicting the detailed land-cover footprint within the urban areas of China, and will be of great use for studies of urban ecosystems.展开更多
By using the eight-times-daily sampling data from an intensive radiosonde observation campaign at Yichang(111°18′E,30°42′N),China in August 2006 and January 2007,the diurnal variation of the planetary boun...By using the eight-times-daily sampling data from an intensive radiosonde observation campaign at Yichang(111°18′E,30°42′N),China in August 2006 and January 2007,the diurnal variation of the planetary boundary layer height determined by using a bulk Richardson(Ri)number approach,was studied in this paper.It was found that the boundary layer heights in both summer and winter months showed diurnal changes and the daily cycle was deeper in summer,which agreed well with the previous studies;the monthly averaged height was 103–1112 m and 89–450 m in summer and winter,respectively;the morning rise began at 0700 LT/1000 LT in summer/winter and the evening transition occurred at 1900 LT in both seasons;the maximum height occurred in the afternoon for most cases,except some peaks found in the winter night;the surface temperature and relative humidity dominated the variations of summer height,while the diurnal variation shown in January 2007 might have some connections with the dynamical processes in the lower troposphere,besides the surface effects.展开更多
基金supported by the National Natural Science Foundation of China (41771360 and 41971295)the National Program for Support of Top-notch Young Professionals, the Hubei Provincial Natural Science Foundation of China (2017CFA029)the National Key Resarch & Development Program of China (2016YFB0501403)。
文摘Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose an operational framework to map urban land cover on the basis of Ziyuan-3 satellite images. Based on this framework, we produced the first high-resolution(2 m) urban land-cover map(Hi-ULCM) covering the 42 major cities of China. The overall accuracy of the Hi-ULCM dataset is 88.55%, of which 14 cities have an overall accuracy of over 90%. Most of the producer’s accuracies and user’s accuracies of the land-cover classes exceed 85%. We further conducted a landscape pattern analysis in the 42 cities based on Hi-ULCM. In terms of the comparison between the 42 cities in China, we found that the difference in the land-cover composition of urban areas is related to the climatic characteristics and urbanization levels, e.g., cities with warm climates generally have higher proportions of green spaces. It is also interesting to find that cities with higher urbanization levels are more habitable, in general. From the landscape viewpoint, the geometric complexity of the landscape increases with the urbanization level.Compared with the existing medium-resolution land-cover/use datasets(at a 30-m resolution), HiULCM represents a significant advance in accurately depicting the detailed land-cover footprint within the urban areas of China, and will be of great use for studies of urban ecosystems.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2012CB825605)the National Natural Science Foundation of China(Grant No.41304125)ZHANG YeHui acknowledges support from the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘By using the eight-times-daily sampling data from an intensive radiosonde observation campaign at Yichang(111°18′E,30°42′N),China in August 2006 and January 2007,the diurnal variation of the planetary boundary layer height determined by using a bulk Richardson(Ri)number approach,was studied in this paper.It was found that the boundary layer heights in both summer and winter months showed diurnal changes and the daily cycle was deeper in summer,which agreed well with the previous studies;the monthly averaged height was 103–1112 m and 89–450 m in summer and winter,respectively;the morning rise began at 0700 LT/1000 LT in summer/winter and the evening transition occurred at 1900 LT in both seasons;the maximum height occurred in the afternoon for most cases,except some peaks found in the winter night;the surface temperature and relative humidity dominated the variations of summer height,while the diurnal variation shown in January 2007 might have some connections with the dynamical processes in the lower troposphere,besides the surface effects.