期刊文献+
共找到525篇文章
< 1 2 27 >
每页显示 20 50 100
基于深度字词融合的小麦种质信息实体关系联合抽取
1
作者 刘合兵 贾笑笑 +3 位作者 时雷 熊蜀峰 马新明 席磊 《计算机工程与设计》 北大核心 2024年第4期1079-1086,共8页
为获得结构化的小麦品种表型和遗传描述,针对非结构化小麦种质数据中存在的实体边界模糊以及关系重叠问题,提出一种基于深度字词融合的小麦种质信息实体关系联合抽取模型WGIE-DCWF(wheat germplasm information extraction model based ... 为获得结构化的小麦品种表型和遗传描述,针对非结构化小麦种质数据中存在的实体边界模糊以及关系重叠问题,提出一种基于深度字词融合的小麦种质信息实体关系联合抽取模型WGIE-DCWF(wheat germplasm information extraction model based on deep character and word fusion)。模型编码层通过深度字词融合和上下文语义特征融合,提高密集实体特征识别能力;模型三元组抽取层建立层叠指针网络,提高重叠关系的提取能力。在小麦种质数据集和公开数据集上的一系列对比实验结果表明,WGIE-DCWF模型能够有效提高小麦种质数据实体关系联合抽取效果,同时拥有较好的泛化性,可以为小麦种质信息知识库构建提供技术支撑。 展开更多
关键词 小麦种质信息 字词融合 实体关系抽取 联合抽取 层叠指针网络 实体识别 关系抽取
下载PDF
基于异构图和语义融合的实体关系抽取
2
作者 唐贤伦 丁河长 +2 位作者 唐瑜泽 谢涛 罗洪平 《实验技术与管理》 CAS 北大核心 2024年第8期22-29,共8页
关系抽取是信息抽取中的一项重要任务,其目的是从非结构化文本中抽取出所有关系三元组。然而,如何有效地处理这一问题仍然是一个挑战,特别是对于关系重叠问题。为了有效处理重叠问题,该文提出一种基于异构图和语义融合的实体关系抽取方... 关系抽取是信息抽取中的一项重要任务,其目的是从非结构化文本中抽取出所有关系三元组。然而,如何有效地处理这一问题仍然是一个挑战,特别是对于关系重叠问题。为了有效处理重叠问题,该文提出一种基于异构图和语义融合的实体关系抽取方法:使用异构图将关系信息作为先验知识融入词表示,增强词表示的表示能力,使得模型能有效地处理单词实体重叠问题;使用语义融合模块将不同层次特征融合在一起作为关系分类模型的输入,使得模型能够有效地处理实体对重叠问题。所提方法在NYT和WebNLG数据集上取得了最好的效果,详细的实验也表明所提方法可以处理复杂的场景。 展开更多
关键词 实体关系抽取 异构图 语义融合 关系重叠 实体关系三元组
下载PDF
基于BERT古文预训练模型的实体关系联合抽取
3
作者 李智杰 杨盛杰 +3 位作者 李昌华 张颉 董玮 介军 《计算机系统应用》 2024年第8期187-195,共9页
古汉语文本承载着丰富的历史和文化信息,对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用.针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题,提出了一种基于BERT古文预训练模型的实体关系联合抽取模... 古汉语文本承载着丰富的历史和文化信息,对这类文本进行实体关系抽取研究并构建相关知识图谱对于文化传承具有重要作用.针对古汉语文本中存在大量生僻汉字、语义模糊和复义等问题,提出了一种基于BERT古文预训练模型的实体关系联合抽取模型(entity relation joint extraction model based on BERT-ancient-Chinese pretrained model,JEBAC).首先,通过融合BiLSTM神经网络和注意力机制的BERT古文预训练模型(BERT-ancientChinese pre-trained model integrated BiLSTM neural network and attention mechanism,BACBA),识别出句中所有的subject实体和object实体,为关系和object实体联合抽取提供依据.接下来,将subject实体的归一化编码向量与整个句子的嵌入向量相加,以更好地理解句中subject实体的语义特征;最后,结合带有subject实体特征的句子向量和object实体的提示信息,通过BACBA实现句中关系和object实体的联合抽取,从而得到句中所有的三元组信息(subject实体,关系,object实体).在中文实体关系抽取DuIE2.0数据集和CCKS 2021的文言文实体关系抽取CCLUE小样本数据集上,与现有的方法进行了性能比较.实验结果表明,该方法在抽取性能上更加有效,F1值分别可达79.2%和55.5%. 展开更多
关键词 古汉语文本 实体关系抽取 BERT古文预训练模型 BiLSTM 注意力 三元组信息
下载PDF
融合限定关系和交互信息的实体关系联合抽取模型
4
作者 唐瑞雪 秦永彬 陈艳平 《中文信息学报》 CSCD 北大核心 2024年第10期106-116,共11页
实体关系抽取作为信息抽取领域的核心任务,旨在从非结构化文本中自动抽取所有的关系三元组。现有研究较难处理句子中关系重叠的情况,存在识别冗余和语义依赖不足的问题。鉴于此,该文提出一种融合限定关系和交互信息的实体关系联合抽取... 实体关系抽取作为信息抽取领域的核心任务,旨在从非结构化文本中自动抽取所有的关系三元组。现有研究较难处理句子中关系重叠的情况,存在识别冗余和语义依赖不足的问题。鉴于此,该文提出一种融合限定关系和交互信息的实体关系联合抽取模型。该模型首先对句子进行关系预测,构成限定关系集。其次,利用限定关系分别地预测可能存在关系的头实体和尾实体,解决关系重叠问题,同时缓解冗余识别。为了加强句子中实体与关系的交互,利用注意力机制强化句子中关系有关信息,通过双仿射和卷积操作来构建评分矩阵。最后,通过评分矩阵对候选三元组进行校正,确定最终的关系三元组。实验结果表明,该模型在NYT和WebNLG数据集上F1值分别达到92.0%和88.7%,相比于所对比的基线模型F1值分别提高了2.8%和1.0%,验证了模型的有效性。 展开更多
关键词 实体关系抽取 联合抽取 重叠关系 限定关系 交互信息
下载PDF
基于并行异构图和序列注意力机制的中文实体关系抽取模型
5
作者 毛典辉 李学博 +2 位作者 刘峻岭 张登辉 颜文婧 《计算机应用》 CSCD 北大核心 2024年第7期2018-2025,共8页
近年来,随着深度学习技术的快速发展,实体关系抽取在许多领域取得了显著的进展。然而,由于汉语具有复杂的句法结构和语义关系,面向中文的实体关系抽取任务中仍然存在着多项挑战。其中,中文文本中的重叠三元组问题是领域中的重要难题之... 近年来,随着深度学习技术的快速发展,实体关系抽取在许多领域取得了显著的进展。然而,由于汉语具有复杂的句法结构和语义关系,面向中文的实体关系抽取任务中仍然存在着多项挑战。其中,中文文本中的重叠三元组问题是领域中的重要难题之一。针对中文文本中的重叠三元组问题,提出了一种混合神经网络实体关系联合抽取(HNNERJE)模型。HNNERJE模型以并行方式融合序列注意力机制和异构图注意力机制,并结合门控融合策略构建了深度集成框架。该模型不仅可以同时捕获中文文本的语序信息和实体关联信息,还能够自适应地调整主客体标记器的输出,从而有效解决重叠三元组问题。另外,通过引入对抗训练算法提高模型对未见样本和噪声的适应能力。运用SHAP(SHapley Additive exPlanations)方法对HNNERJE模型进行解释分析,基于模型的识别结果解析它在抽取实体和关系时所依据的关键特征。HNNERJE模型在NYT、WebNLG、CMeIE和DuIE数据集上的F1值分别达到了92.17%、93.42%、47.40%和67.98%。实验结果表明:HNNERJE模型可以将非结构化的文本数据转化为结构化的知识表示,有效提取其中蕴含的有价值信息。 展开更多
关键词 实体关系抽取 异构图 注意力机制 对抗训练 SHAP方法
下载PDF
基于平行交互注意力网络的中文电子病历实体及关系联合抽取
6
作者 李丽双 王泽昊 +1 位作者 秦雪洋 袁光辉 《中文信息学报》 CSCD 北大核心 2024年第6期108-118,共11页
基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性... 基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性,在多个标准的医学和通用数据集上取得最优结果;当前中文医学实体及关系标注数据集较少,该文基于中文电子病历构建了实体和关系抽取数据集(CEMRIE),与医学专家共同制定了语料标注规范,并基于该文所提出的模型实验得出基准结果。 展开更多
关键词 实体关系联合抽取 双向特征交互模块 自注意力机制 中文电子病历 数据集标注与构建
下载PDF
基于对比学习与梯度惩罚的实体关系联合抽取模型
7
作者 张强 曾俊玮 陈锐 《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期1155-1162,共8页
针对使用全局指针网络进行实体关系抽取时特征信息不明显的实体关系类型数据稀疏问题,以及数据中存在的类别不平衡和错误标注问题,提出一种基于对比学习和梯度惩罚方法并使用改进的RoBERTa预训练模型的实体关系联合抽取模型,在阿里天池... 针对使用全局指针网络进行实体关系抽取时特征信息不明显的实体关系类型数据稀疏问题,以及数据中存在的类别不平衡和错误标注问题,提出一种基于对比学习和梯度惩罚方法并使用改进的RoBERTa预训练模型的实体关系联合抽取模型,在阿里天池中文医疗信息处理评测基准数据集CBLUE2.0上进行实验的结果表明,该模型相比全局指针网络效果更优,能更有效完成复杂数据的实体关系抽取. 展开更多
关键词 实体关系抽取 对比学习 梯度惩罚 RoBERTa预训练模型 全局指针网络
下载PDF
基于跨度和边界探测的实体关系联合抽取模型
8
作者 廖涛 许锦涛 《湖北民族大学学报(自然科学版)》 CAS 2024年第2期178-184,共7页
针对大多数跨度模型将文本分割成跨度序列时,产生大量非实体跨度,导致了数据不平衡和计算复杂度高等问题,提出了基于跨度和边界探测的实体关系联合抽取模型(joint extraction model for entity relationships based on span and boundar... 针对大多数跨度模型将文本分割成跨度序列时,产生大量非实体跨度,导致了数据不平衡和计算复杂度高等问题,提出了基于跨度和边界探测的实体关系联合抽取模型(joint extraction model for entity relationships based on span and boundary detection,SBDM)。SBDM首先使用训练Transformer的双向编码器表征量(bidirectional encoder representations from Transformer,BERT)模型将文本转化为词向量,并融合了通过图卷积获取的句法依赖信息以形成文本的特征表示;接着通过局部信息和句子上下文信息去探测实体边界并进行标记,以减少非实体跨度;然后将实体边界标记形成的跨度序列进行实体识别;最后将局部上下文信息融合到1个跨度实体对中并使用sigmoid函数进行关系分类。实验表明,SBDM在SciERC(multi-task identification of entities,relations,and coreference for scientific knowledge graph construction)数据集、CoNLL04(the 2004 conference on natural language learning)数据集上的关系分类指标S F1分别达到52.86%、74.47%,取得了较好效果。SBDM用于关系分类任务中,能促进跨度分类方法在关系抽取上的研究。 展开更多
关键词 实体关系 联合抽取 句法依赖 跨度 实体边界 图卷积 关系分类
下载PDF
基于潜在关系的实体关系联合抽取模型
9
作者 彭晏飞 张睿思 +1 位作者 王瑞华 郭家隆 《计算机科学与探索》 CSCD 北大核心 2024年第4期1047-1056,共10页
实体关系联合抽取的作用是从特定文本中识别出实体和对应关系,同时它也是知识图谱构建和更新的基础。目前的联合抽取方法在追求性能的同时都忽略了抽取过程中的信息冗余。针对此问题,提出基于潜在关系的实体关系联合抽取模型,通过设计... 实体关系联合抽取的作用是从特定文本中识别出实体和对应关系,同时它也是知识图谱构建和更新的基础。目前的联合抽取方法在追求性能的同时都忽略了抽取过程中的信息冗余。针对此问题,提出基于潜在关系的实体关系联合抽取模型,通过设计一种新的解码方式来减少预测过程中关系、实体和三元组的冗余信息,从整体上分为提取潜在实体对、解码关系两步来完成从句子中抽取三元组的任务。首先通过潜在实体对提取器预测实体间是否存在潜在关系,同时筛选出置信度高的实体对作为最终的潜在实体对;其次将关系解码视作多标签二分类任务,通过关系解码器预测每个潜在实体对之间全部关系的置信度;最后通过置信度确定关系数量和类型,以完成三元组的抽取任务。在两个通用数据集上的实验结果表明,所提模型相比基线模型在准确率和F1指标上的效果更好,验证了所提模型的有效性,消融实验也证明了模型内部各部分的有效性。 展开更多
关键词 实体关系联合抽取 潜在关系 潜在实体 多标签二分类任务 信息冗余
下载PDF
基于卷积神经网络的医疗护理实体关系抽取
10
作者 曹茂俊 胡喆 《电子设计工程》 2024年第8期18-22,共5页
针对医疗护理领域知识复杂性强、数据量大以及对准确度要求较高的问题,该研究提出一种基于卷积神经网络的医疗护理学实体关系抽取方法,实现对护理学语义关系的细粒度文本挖掘。该研究构建了医疗护理学语料标注系统,通过将医疗语料转化... 针对医疗护理领域知识复杂性强、数据量大以及对准确度要求较高的问题,该研究提出一种基于卷积神经网络的医疗护理学实体关系抽取方法,实现对护理学语义关系的细粒度文本挖掘。该研究构建了医疗护理学语料标注系统,通过将医疗语料转化为向量特征矩阵,实现了对医疗语料的自动过滤和标注。通过向神经网络模型嵌入所构建的医疗关系语料库,一定程度上提高了模型疾病分类的准确度。在医疗护理学数据集上的实验表明,基于卷积神经网络的模型在指标精确度、召回率、F1值可达到89.78%、87.59%、89.77%。综上所述,该研究提出的基于卷积神经网络的医疗护理学实体关系抽取方法能够有效地抽取医疗语料数据中的实体关系,优于传统的实体关系抽取模型。 展开更多
关键词 实体关系抽取 卷积神经网络 医疗护理学 词向量 知识图谱
下载PDF
基于伪实体数据增强的高精准率医学领域实体关系抽取
11
作者 郭安迪 贾真 李天瑞 《计算机应用》 CSCD 北大核心 2024年第2期393-402,共10页
针对医学领域知识密集、实体抽取和关系分类存在误差传递的问题,提出一种基于伪实体数据增强的高精准率的实体关系抽取框架。首先,在实体抽取模块添加基于Transformer的特征读取单元捕捉类别信息,以在密集的实体中准确识别医学长实体;其... 针对医学领域知识密集、实体抽取和关系分类存在误差传递的问题,提出一种基于伪实体数据增强的高精准率的实体关系抽取框架。首先,在实体抽取模块添加基于Transformer的特征读取单元捕捉类别信息,以在密集的实体中准确识别医学长实体;其次,在流水线抽取框架的基础上插入关系负例生成模块,通过基于欠采样的伪实体生成模型生成混淆关系分类模型的伪实体,并通过三种数据增强生成策略提升模型鉴别主语宾语颠倒、主语宾语边界错误和关系分类错误的能力;最后,通过基于悬浮标记的关系分类模型缓解数据增强带来的训练时间剧增的问题。在CMeIE数据集中,对比了目前主流的4个模型。实体抽取部分相较于次优模型PL-Marker(Packed Levitated Marker),F1值提升了2.26%;实体关系抽取相较于次优模型CBLUE(Chinese Biomedical Language Understanding Evaluation)提出的流水线抽取模型,F1值提升了5.45%,精准率提升了15.62%。实验结果表明使用特征读取单元和伪实体数据增强模块可有效提高抽取的精准率。 展开更多
关键词 实体关系抽取 数据增强 高精准率 医学领域 关系负例生成
下载PDF
融合交互注意力网络的实体和关系联合抽取模型 被引量:1
12
作者 郝小芳 张超群 +1 位作者 李晓翔 王大睿 《计算机工程与应用》 CSCD 北大核心 2024年第8期156-164,共9页
实体关系三元组的抽取效果直接影响后期知识图谱构建的质量,而传统流水线式和联合式抽取的模型,并没有对句子级别和关系级别的语义特征进行有效建模,从而导致模型性能的缺失。为此,提出一种融合句子级别和关系级别的交互注意力网络的实... 实体关系三元组的抽取效果直接影响后期知识图谱构建的质量,而传统流水线式和联合式抽取的模型,并没有对句子级别和关系级别的语义特征进行有效建模,从而导致模型性能的缺失。为此,提出一种融合句子级别和关系级别的交互注意力网络的实体和关系联合抽取模型RSIAN,该模型通过交互注意力网络来学习句子级别和关系级别的高阶语义关联,增强句子和关系之间的交互,辅助模型进行抽取决策。在构建的中文旅游数据集(TDDS)的Precision、Recall和F1值分别为0.872、0.760和0.812,其性能均优于其他对比模型;为了进一步验证该模型在英文联合抽取上的性能,在公开英文数据集NYT和Webnlg上进行实验,该模型的F1值相比基线模型RSAN模型分别提高了0.014和0.013,并且该模型在重叠三元组的分析实验也均取得了优于基线模型的性能且更稳定。 展开更多
关键词 交互注意力网络 句子级别 关系级别 实体关系联合抽取 注意力机制 重叠三元组
下载PDF
面向文本实体关系抽取研究综述
13
作者 任安琪 柳林 +1 位作者 王海龙 刘静 《计算机科学与探索》 CSCD 北大核心 2024年第11期2848-2871,共24页
信息抽取是知识图谱构建的基础,关系抽取作为信息抽取的关键流程和核心步骤,旨在从文本数据中定位实体并识别实体间的语义联系。因此提高关系抽取的效率可以有效提升信息抽取的质量,进而影响到知识图谱的构建以及后续的下游任务。关系... 信息抽取是知识图谱构建的基础,关系抽取作为信息抽取的关键流程和核心步骤,旨在从文本数据中定位实体并识别实体间的语义联系。因此提高关系抽取的效率可以有效提升信息抽取的质量,进而影响到知识图谱的构建以及后续的下游任务。关系抽取按照抽取文本长度可以分为句子级关系抽取和文档级关系抽取,两种级别的抽取方法在不同应用场景下各有优缺点。句子级关系抽取适用于较小规模数据集的应用场景,而文档级关系抽取适用于新闻事件分析、长篇报告或文章的关系挖掘等场景。不同于已有的关系抽取,介绍了关系抽取的基本概念以及领域内近年来的发展历程,罗列了两种级别关系抽取所采用的数据集,对数据集的特点进行概述;分别对句子级关系抽取和文档级关系抽取进行了阐述,介绍了不同级别关系抽取的优缺点,并分析了各类方法中代表模型的性能以及局限性;总结了当前研究领域中存在的问题并对关系抽取发展前景进行了展望。 展开更多
关键词 信息抽取 实体关系抽取 句子级关系抽取 文档级关系抽取 知识图谱构建
下载PDF
融合自注意力和实体类型知识的实体关系联合抽取模型 被引量:1
14
作者 张思邈 朱继召 +1 位作者 刘颢 范纯龙 《中国电子科学研究院学报》 2024年第1期84-90,共7页
从非结构化文本中抽取实体关系三元组是自然语言处理中的主要任务形式之一。目前主流的方法是采用联合式抽取,能够在训练过程中自动捕捉到实体与关系间的依赖知识,提高了实体和关系的抽取效果。但这些方法忽略了实体的类型知识,导致大... 从非结构化文本中抽取实体关系三元组是自然语言处理中的主要任务形式之一。目前主流的方法是采用联合式抽取,能够在训练过程中自动捕捉到实体与关系间的依赖知识,提高了实体和关系的抽取效果。但这些方法忽略了实体的类型知识,导致大量的冗余计算和错误结果的产生。鉴于此,文中提出一种融合注意力和实体类型知识的实体关系联合抽取方法。首先,采用预训练模型BERT作为编码器得到句子中各字符的向量表示,再经双向LSTM层处理得到最终的语义表示;其次,基于表示层的结果完成头、尾实体的识别;接着,通过融合不同头实体的语义信息到句子表示中,实现头实体类型约束下的潜在语义关系发现;最后,将头实体和关系分别输入自注意力模块识别出对应尾实体,得到实体关系三元组。通过在公开数据集NYT和WebNLG上的大量实验表明:文中所提模型在实体关系联合抽取任务中的F1值达到了93.2%和93.3%,与当前主流模型相比提升显著。 展开更多
关键词 自注意力机制 BERT 实体关系三元组 联合抽取
下载PDF
基于RoBERTa和加权图卷积网络的中文地质实体关系抽取
15
作者 张鲁 段友祥 +1 位作者 刘娟 陆誉翕 《计算机科学》 CSCD 北大核心 2024年第8期297-303,共7页
知识是大数据和人工智能的基石,知识图谱的可解释性和可扩展性等优势使其成为智能系统的重要技术。智能决策在各个领域都有迫切的应用需求,为知识图谱提供基于数据分析和推理的决策支持和应用场景,但领域场景复杂、数据多源、知识维度广... 知识是大数据和人工智能的基石,知识图谱的可解释性和可扩展性等优势使其成为智能系统的重要技术。智能决策在各个领域都有迫切的应用需求,为知识图谱提供基于数据分析和推理的决策支持和应用场景,但领域场景复杂、数据多源、知识维度广,因此知识图谱的构建和应用都面临着很多挑战。针对地质领域知识图谱构建过程中领域知识模式完备性差的问题,以及现有实体关系抽取方法在处理非欧氏数据时存在的不足,提出了一种基于图结构的实体关系抽取模型RoGCN-ATT。该模型使用RoBERTa-wwm-ext-large中文预训练模型作为序列编码器,结合BiLSTM获取更丰富的语义信息,使用加权图卷积网络结合注意力机制获取结构依赖信息,以增强模型对关系三元组的抽取性能。在地质数据集上F1值达78.56%,与其他模型的对比实验表明,RoGCN-ATT有效提升了实体关系抽取性能,为地质知识图谱的构建和应用提供了有力的支持。 展开更多
关键词 实体关系抽取 图卷积网络 依存句法分析 注意力机制 地质领域
下载PDF
基于跨证据文本实体关系构建的事实核查研究
16
作者 贺彦程 徐冰 朱聪慧 《中文信息学报》 CSCD 北大核心 2024年第3期93-101,112,共10页
事实核查是指基于证据文本的虚假信息检测任务,目前已有的研究方法主要是将声明文本与证据文本拼接后输入预训练模型进行分类判断,或者通过单一节点的全连接图进行推理判断。这些方法忽略了证据文本间的远距离语义关联和其包含的噪声干... 事实核查是指基于证据文本的虚假信息检测任务,目前已有的研究方法主要是将声明文本与证据文本拼接后输入预训练模型进行分类判断,或者通过单一节点的全连接图进行推理判断。这些方法忽略了证据文本间的远距离语义关联和其包含的噪声干扰。针对以上问题,该文提出了一种基于跨证据文本实体关系的图卷积神经网络模型(C ross-E vidence Entity R elation Reasoning M odel,CERM)。该模型以多个证据文本的实体共现关系为基础,聚合不同实体对象的语义结构信息,同时减小噪声信息干扰,有效提升模型的虚假信息判别能力。实验结果证明,在公开数据集上该文提出的方法在通用评测指标上均优于现有的对比模型,验证了CERM模型在事实核查研究任务上的有效性。 展开更多
关键词 事实核查 图卷积神经网络 实体关系
下载PDF
主实体增强型层叠指针网络在中文医学实体关系抽取中的应用
17
作者 姜植瀚 昝红英 张莉 《计算机科学》 CSCD 北大核心 2024年第S01期97-102,共6页
随着中国医学事业的快速发展,中文医学文本的数量不断增加。为了从这些中文医学文本中提取有价值的信息,并解决中文医学领域的实体关系抽取问题,研究人员已经提出一系列基于双向LSTM的模型。然而,由于双向LSTM的训练速度等问题,文中引... 随着中国医学事业的快速发展,中文医学文本的数量不断增加。为了从这些中文医学文本中提取有价值的信息,并解决中文医学领域的实体关系抽取问题,研究人员已经提出一系列基于双向LSTM的模型。然而,由于双向LSTM的训练速度等问题,文中引入了层叠指针网络框架来处理中文医学文本的实体关系抽取任务。为了弥补层叠指针网络框架中主实体识别能力不足以及解决复用编码层时的梯度问题,文中提出了主实体增强模块,并引入了条件层归一化方法,从而提出了面向中文医学文本的主语增强型层叠指针网络框架(Subject Enhanced Cascade Binary Pointer Tagging Framework for Chinese Medical Text,SE-CAS)。通过引入主实体增强模块,能够精确识别有效的主实体,并排除错误实体。此外,还使用条件层归一化方法来替代原模型中的简单相加方法,并将其应用于编码层和主实体编码层。实验结果证明,所提模型在CMeIE数据集上取得了5.73%的F1值提升。通过消融实验证实,各个模块均能带来性能提升,并且这些提升具有叠加效应。 展开更多
关键词 实体关系抽取 层叠指针网络 医学关系抽取 深度学习 主语识别
下载PDF
基于多头自注意力机制和对抗训练的实体关系联合抽取 被引量:1
18
作者 甘雨金 李红军 +3 位作者 唐小川 王子怡 甘晨灼 胡正浩 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期513-521,共9页
实体关系联合抽取是构建知识图谱的重要阶段,旨在抽取文本中存在语义关系的实体对。针对已有的实体关系联合抽取方法在抽取过程中存在的冗余关系预测、实体关系重叠以及上下文潜在语义信息捕捉不足的问题,提出联合多头自注意力机制和对... 实体关系联合抽取是构建知识图谱的重要阶段,旨在抽取文本中存在语义关系的实体对。针对已有的实体关系联合抽取方法在抽取过程中存在的冗余关系预测、实体关系重叠以及上下文潜在语义信息捕捉不足的问题,提出联合多头自注意力机制和对抗训练的方法进行实体关系的抽取。该方法利用多头自注意力机制捕获潜在语义特征,以提升模型对上下文语义信息的感知能力;将对抗训练引入模型的训练阶段,以增强模型的泛化能力和鲁棒性。实验结果表明:与现有主流模型对比,提出的模型在NYT和WebNLG两个公共数据集上都取得了更优的F 1值,在处理实体关系重叠问题以及不定数量三元组抽取上都能保持稳定的性能表现,验证了模型的有效性。 展开更多
关键词 实体关系联合抽取 对抗训练 多头自注意力 知识图谱
下载PDF
一种基于强化学习的软件安全实体关系预测方法
19
作者 杨鹏 刘亮 +3 位作者 张磊 刘林 李子强 贾凯 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期163-171,共9页
为改善现有基于翻译的软件安全知识图谱实体关系预测方法不具备可解释性,而基于路径推理的方法准确性不高的现状,本研究提出一种基于强化学习的预测方法 .该方法首先分别使用TuckER模型和SBERT模型将软件安全知识图谱的结构信息和描述... 为改善现有基于翻译的软件安全知识图谱实体关系预测方法不具备可解释性,而基于路径推理的方法准确性不高的现状,本研究提出一种基于强化学习的预测方法 .该方法首先分别使用TuckER模型和SBERT模型将软件安全知识图谱的结构信息和描述信息表示为低维度向量,接着将实体关系预测过程建模为强化学习过程,将TuckER模型计算得到的得分引入强化学习的奖励函数,并且使用输入的实体关系向量训练强化学习的策略网络,最后使用波束搜索得到答案实体的排名列表和与之对应的推理路径.实验结果表明,该方法给出了所有预测结果相应的关系路径,在链接预测实验中hit@5为0.426,hit@10为0.797,MRR为0.672,在事实预测实验中准确率为0.802,精确率为0.916,在准确性方面与同类实体关系预测模型相比具有不同程度的提升,并且通过进行可解释性分析实验,验证了该方法所具备的可解释性. 展开更多
关键词 软件安全实体关系 强化学习 链接预测 知识图谱 可解释推理
下载PDF
基于指针标注的跨境民族文化实体关系抽取方法
20
作者 杨振平 毛存礼 +2 位作者 雷雄丽 黄于欣 张勇丙 《中文信息学报》 CSCD 北大核心 2024年第3期75-83,共9页
跨境民族文化领域文本中存在较多的领域词汇,使得模型提取领域信息困难,造成上下文领域信息缺失,在该领域中实体密度分布高,面临实体关系重叠的问题。考虑到领域信息对跨境民族文化文本语义表征有着重要的作用,该文提出一种基于指针标... 跨境民族文化领域文本中存在较多的领域词汇,使得模型提取领域信息困难,造成上下文领域信息缺失,在该领域中实体密度分布高,面临实体关系重叠的问题。考虑到领域信息对跨境民族文化文本语义表征有着重要的作用,该文提出一种基于指针标注的跨境民族文化实体关系抽取方法,在字符向量表示中融入领域词典信息来增强领域信息用于解决领域实体标注不准确问题,通过多层指针标注解决跨境民族文化领域实体关系重叠问题。实验结果表明,在跨境民族文化实体关系抽取数据集上所提出方法相比于基线方法的F_(1)值提升了2.34%。 展开更多
关键词 跨境民族文化 实体关系抽取 指针标注 领域词典信息
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部