Laboratory scale model of DMMBF (dual mixed media biofilter) were designed and installed in AI-Mustansiriya University Environmental Hydraulic Lab. Experiments were conducted using two mixed layers through PVR colum...Laboratory scale model of DMMBF (dual mixed media biofilter) were designed and installed in AI-Mustansiriya University Environmental Hydraulic Lab. Experiments were conducted using two mixed layers through PVR column--2.2 m height and 300 mm diameter. The first mixed media filter of depth 640mm mixed of sand, rice husk and granular activated carbon. The percentage volume mix is 1:1:1. While the other mixed media of depth 740 mm, consisting of coal, crash porcelinaite, rock and granite with equally percentage volume. Fifty samples were collected during the experiments, which was spread over a period of forty two weeks. The obtained results indicate that when the flow loading raised from 0.15 L/min to 2.7 L/rain, the removal efficiency of BOD decreased 8%-11%, and the removal efficiency of COD deceased 3%-4%, while the removal efficiency of turbidity increased with the decreasing of hydraulic loading. The results showed that the removal efficiency of turbidity is more than 95% at the lower discharge (0.15 L/min). Therefore, infiltration should be conservatively designed using low loading rates.展开更多
This paper shows that one-dimensional (I-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing mod...This paper shows that one-dimensional (I-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing models. This is based on standardized lab-scale cell experiments for the determination of droplet rise, breakage, coalescence and mass transfer parameters in addition to a limited number of additional mini-plant experiments with original fluids. Alternatively, the hydrodynamic parameters can also be derived using more sophisticated 3- D CFD simulations. Computational 1-D modeling served as a basis to replace pilot-plant experiments in any column geometry. The combination of 3-D CFD simulations with droplet population balance models (DPBM) increased the accuracy of the hydrodynamic simulations and gave information about the local droplet size. The high computational costs can be reduced by open source CFD codes when using a flexible mesh generation. First combined simulations using a three way coupled CFD/DPBM/mass-transfer solver pave the way for a safer design of industrial-sized columns, where no correlations are available.展开更多
Biomass in the form of nutshell, hay of catkin, wheat straw and linseed residue in particles have been pyrolyzed in laboratory scale fixed bed reactor which yielded liquid oil, solid char and gas. The variation of oil...Biomass in the form of nutshell, hay of catkin, wheat straw and linseed residue in particles have been pyrolyzed in laboratory scale fixed bed reactor which yielded liquid oil, solid char and gas. The variation of oil yield for different biomass feedstock with reactor bed temperature and feed size is presented in this paper. A maximum liquid yield of 55 wt% of dry feedstock is obtained at an optimum temperature of 500℃ for a feed size of 300-600μm with a running time of 55 min for nutshell as the feedstock while the minimum liquid oil yield is found to be 30 wt% of feedstock at an optimum temperature of 400℃ for a feed size of 2.36 mm with a running time of 65 min for linseed residue as the feedstock. A comparison on the product yields is highlighted in this study. The pyrolysis liquid products are characterized and compared for some of the fuel properties like HHV (higher heating value), viscosity, density and specific gravity.展开更多
文摘Laboratory scale model of DMMBF (dual mixed media biofilter) were designed and installed in AI-Mustansiriya University Environmental Hydraulic Lab. Experiments were conducted using two mixed layers through PVR column--2.2 m height and 300 mm diameter. The first mixed media filter of depth 640mm mixed of sand, rice husk and granular activated carbon. The percentage volume mix is 1:1:1. While the other mixed media of depth 740 mm, consisting of coal, crash porcelinaite, rock and granite with equally percentage volume. Fifty samples were collected during the experiments, which was spread over a period of forty two weeks. The obtained results indicate that when the flow loading raised from 0.15 L/min to 2.7 L/rain, the removal efficiency of BOD decreased 8%-11%, and the removal efficiency of COD deceased 3%-4%, while the removal efficiency of turbidity increased with the decreasing of hydraulic loading. The results showed that the removal efficiency of turbidity is more than 95% at the lower discharge (0.15 L/min). Therefore, infiltration should be conservatively designed using low loading rates.
文摘This paper shows that one-dimensional (I-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing models. This is based on standardized lab-scale cell experiments for the determination of droplet rise, breakage, coalescence and mass transfer parameters in addition to a limited number of additional mini-plant experiments with original fluids. Alternatively, the hydrodynamic parameters can also be derived using more sophisticated 3- D CFD simulations. Computational 1-D modeling served as a basis to replace pilot-plant experiments in any column geometry. The combination of 3-D CFD simulations with droplet population balance models (DPBM) increased the accuracy of the hydrodynamic simulations and gave information about the local droplet size. The high computational costs can be reduced by open source CFD codes when using a flexible mesh generation. First combined simulations using a three way coupled CFD/DPBM/mass-transfer solver pave the way for a safer design of industrial-sized columns, where no correlations are available.
文摘Biomass in the form of nutshell, hay of catkin, wheat straw and linseed residue in particles have been pyrolyzed in laboratory scale fixed bed reactor which yielded liquid oil, solid char and gas. The variation of oil yield for different biomass feedstock with reactor bed temperature and feed size is presented in this paper. A maximum liquid yield of 55 wt% of dry feedstock is obtained at an optimum temperature of 500℃ for a feed size of 300-600μm with a running time of 55 min for nutshell as the feedstock while the minimum liquid oil yield is found to be 30 wt% of feedstock at an optimum temperature of 400℃ for a feed size of 2.36 mm with a running time of 65 min for linseed residue as the feedstock. A comparison on the product yields is highlighted in this study. The pyrolysis liquid products are characterized and compared for some of the fuel properties like HHV (higher heating value), viscosity, density and specific gravity.